
Intensity Frontier

Common Offline Documentation:
art Workbook and Users Guide

Alpha Release 0.20

July 5, 2013

Scientific Computing Division
Future Programs and Experiments Department

Scientific Software Infrastructure Group

Principal Author: Rob Kutschke
Editor: Anne Heavey

1

2

Contents

Contents 3

art Glossary 11

List of Figures 22

List of Tables 25

Listings 27

I Introduction 1

1 Conventions Used in this Documentation 1

2 Introduction to the art Event Processing Framework 1
2.1 What is art and Who Uses it? . 1
2.2 Why art? . 2
2.3 C++ and C++11 . 2
2.4 Getting Help . 3
2.5 Overview of the Documentation Suite 3

2.5.1 The Introduction . 4
2.5.2 The Workbook . 4
2.5.3 Users Guide . 4
2.5.4 Reference Manual . 5
2.5.5 Technical Reference . 5
2.5.6 Glossary . 5

2.6 Some Background Material . 5
2.6.1 Events and Event IDs . 5
2.6.2 art Modules and the Event Loop 6
2.6.3 Module Types . 9
2.6.4 art Data Products . 10
2.6.5 art Services . 10
2.6.6 Shareable Libraries and art 12
2.6.7 Build Systems and art . 12

3

2.6.8 External Products . 13
2.6.9 The Event-Data Model and Persistency 14
2.6.10 Event-Data Files . 15
2.6.11 Files on Tape . 16

2.7 The Toy Experiment . 16
2.7.1 Toy Detector Description 16
2.7.2 Workflow for Running the Toy Experiment Code 17

2.8 Rules, Best Practices, Conventions and Style 20

3 Unix Prerequisites 1
3.1 Introduction . 1
3.2 Commands . 1
3.3 Shells . 2
3.4 Scripts: Part 1 . 3
3.5 Unix Environments . 3

3.5.1 Layering Environments . 3
3.5.2 Examining and Using Environment Variables 4

3.6 Paths and $PATH . 6
3.7 Scripts: Part 2 . 7
3.8 bash Functions and Aliases . 8
3.9 Login Scripts . 8
3.10 Suggested Unix and bash References 9

4 Site-Specific Setup Procedure 1

5 Get your C++ up to Speed 1
5.1 Introduction . 1
5.2 Establishing the Environment . 2

5.2.1 Initial Setup . 2
5.2.2 Subsequent Logins . 3

5.3 C++ Exercise 1: The Basics . 3
5.3.1 Concepts to Understand . 3
5.3.2 How to Compile, Link and Run 4
5.3.3 Suggested Homework . 5
5.3.4 Discussion . 5
5.3.5 How was this Exercise Built? 6

5.4 C++ Exercise 2: About Compiling and Linking 6
5.4.1 What You Will Learn . 6
5.4.2 The Source Code for this Exercise 7
5.4.3 Compile, Link and Run the Exercise 8
5.4.4 Alternate Script build2 11
5.4.5 Suggested Homework . 12

5.5 C++ Exercise 3: Libraries . 13
5.5.1 What You Will Learn . 14
5.5.2 Building and Running the Exercise 14

5.6 Classes . 17

4

5.6.1 Introduction . 17
5.6.2 C++ Exercise 4 v1: The Most Basic Version 18
5.6.3 C++ Exercise 4 v2: The Default Constructor 22
5.6.4 C++ Exercise 4 v3: Constructors with Arguments 23
5.6.5 C++ Exercise 4 v4: Colon Initializer Syntax 25
5.6.6 C++ Exercise 4 v5: Member functions 27
5.6.7 C++ Exercise 4 v6: Private Data and Accessor Methods . . 30

5.6.7.1 Setters and Getters 30
5.6.7.2 What’s the deal with the underscore? 34
5.6.7.3 An example to motivate private data 35

5.6.8 C++ Exercise 4 v7: The inline keyword 35
5.6.9 C++ Exercise 4 v8: Defining Member Functions within the

Class Declaration . 37
5.6.10 C++ Exercise 4 v9: The stream insertion operator 38
5.6.11 Review . 40

5.7 C++ References . 41

6 Using External Products in UPS 1
6.1 The UPS Database List: PRODUCTS 1
6.2 UPS Handling of Variants of a Product 3
6.3 The setup Command: Syntax and Function 3
6.4 Current Versions of Products . 4
6.5 Environment Variables Defined by UPS 5
6.6 Finding Header Files . 6

6.6.1 Introduction . 6
6.6.2 Finding art Header Files 6
6.6.3 Finding Headers from Other UPS Products 8
6.6.4 Exceptions: The Workbook, ROOT and Geant4 9

II Workbook 11

7 Preparation for Running the Workbook Exercises 1
7.1 Introduction . 1
7.2 Getting Computer Accounts on Workbook-enabled Machines 1
7.3 Choosing a Machine and Logging In 2
7.4 Launching new Windows: Verify X Connectivity 3
7.5 Choose an Editor . 3

8 Exercise 1: Run Pre-built art Modules 1
8.1 Introduction . 1
8.2 Prerequisites . 1
8.3 What You Will Learn . 1
8.4 Running the Exercise . 2

8.4.1 The Pieces . 2
8.4.2 Log In, Set Up and Execute art 2

5

8.4.2.1 Standard Procedure 3
8.4.2.2 Procedure allowing Self-managed Working Directory 3

8.5 Logging In Again . 4
8.6 Examine Output . 4
8.7 Understanding the Configuration File hello.fcl 5

8.7.1 Some Bookkeeping Syntax 5
8.7.2 Some Physics Processing Syntax 7
8.7.3 Command line Options . 8
8.7.4 Maximum Number of Events to Process 8
8.7.5 Changing the Input Files 9
8.7.6 Skipping Events . 11
8.7.7 Identifying the User Code to Execute 12
8.7.8 Paths . 13
8.7.9 Writing an Output File . 15

8.8 Understanding the Process for Exercise 1 16
8.8.1 Follow the Site-Specific Setup Procedure (Details) 16
8.8.2 Make a Working Directory (Details) 17
8.8.3 Setup the toyExperiment UPS Product (Details) 17
8.8.4 Copy Files to your Current Working Directory (Details) . . . 18
8.8.5 Source makeLinks.sh (Details) 18
8.8.6 Run art (Details) . 19

8.9 How does art find Modules? . 19
8.10 The art Run-time Environment . 20
8.11 Finding FHiCL files: FHICL FILE PATH 21

8.11.1 The -c command line argument 22
8.11.2 #include Files . 22

9 Exercise 2: Build and Run Your First Module 1
9.1 Introduction . 1
9.2 Prerequisites . 2
9.3 What You Will Learn . 3
9.4 Setting up to Run Exercises: Standard Procedure 3

9.4.1 “Source Window” Setup 3
9.4.2 Examine Source Window Setup 4

9.4.2.1 About git and What it Did 4
9.4.2.2 Contents of the Source Directory 5

9.4.3 “Build Window” Setup . 5
9.4.4 Examine Build Window Setup 6

9.5 Setting up to Run Exercises: Self-managed Working Directory . . . 8
9.6 Logging In Again . 9
9.7 The art Development Environment 10
9.8 Running the Exercise . 12

9.8.1 Run art on first.fcl 12
9.8.2 The FHiCL File first.fcl 12
9.8.3 The Source Code File First module.cc 13

9.8.3.1 The #include Files 14

6

9.8.3.2 The Declaration of the Class First 14
9.8.3.3 The Constructor for the Class First 16
9.8.3.4 Aside: Unused Formal Parameters 17
9.8.3.5 The Member Function analyze and art::Event 18
9.8.3.6 art::EventID 20
9.8.3.7 DEFINE ART MACRO: The Module Maker Macros 22
9.8.3.8 Some Alternate Styles 22

9.9 What does the Build System Do? 24
9.9.1 The Basic Operation . 24
9.9.2 Incremental Builds and Complete Rebulds 26
9.9.3 Finding Header Files at Compile-time 27
9.9.4 Finding Shared Library Files at Link-time 29
9.9.5 Build System Details . 30

9.10 Suggested Activities . 31
9.10.1 Create Your Second Module 31
9.10.2 Use artmod to Create Your Third Module 32
9.10.3 Running Many Modules at Once 34
9.10.4 Access Parts of the EventID 35

9.11 Final Remarks . 37
9.11.1 Why is there no First module.h File? 37
9.11.2 The Three File Module Style 38

9.12 Review . 39
9.12.1 What Makes a class an Analyzer Module 39
9.12.2 Flow from source to .fcl . 40

10 Exercise 3: The Optional Member Functions of art Modules 1
10.1 Introduction . 1
10.2 Prerequisites . 1
10.3 What You Will Learn . 1
10.4 Setting up to Run this Exercise . 2
10.5 The Source File Optional module.cc 3
10.6 The classss art::Run, art::RunID, art::SubRun and art::SubRunID

. 4
10.7 Running this Exercise . 5
10.8 The Member Function beginJob 6
10.9 Suggested Activities . 7

10.9.1 Add the Matching end Member functions 7
10.9.2 Run on Multiple Input Files 8

11 Parameter Sets 1
11.1 Introduction . 1
11.2 What You Will Learn . 2
11.3 Prerequisites . 2
11.4 Running the Exercise . 2
11.5 Discussion . 2
11.6 Suggested Activities . 2

7

12 Multiple Instances of a Module within one art Process 1
12.1 Prerequisites . 1
12.2 What You Will Learn . 1
12.3 Running the Exercise . 1
12.4 Discussion . 1
12.5 Suggested Activities . 1

13 Accessing Data Products 1
13.1 Prerequisites . 1
13.2 What You Will Learn . 1
13.3 Running the Exercise . 1
13.4 Discussion . 1
13.5 Suggested Activities . 1

14 Making Histograms and TFileService 1
14.1 Prerequisites . 1
14.2 What You Will Learn . 1
14.3 Running the Exercise . 1
14.4 Discussion . 1
14.5 Suggested Activities . 1

15 Looping Over Collections 1
15.1 Prerequisites . 1
15.2 What You Will Learn . 1
15.3 Running the Exercise . 1
15.4 Discussion . 1
15.5 Suggested Activities . 1

16 The Geometry Service 1
16.1 Prerequisites . 1
16.2 What You Will Learn . 1
16.3 Running the Exercise . 1
16.4 Discussion . 1
16.5 Suggested Activities . 1

17 The Particle Data Table 1
17.1 Prerequisites . 1
17.2 What You Will Learn . 1
17.3 Running the Exercise . 1
17.4 Discussion . 1
17.5 Suggested Activities . 1

18 GenParticle: Properties of Generated Particles 1
18.1 Prerequisites . 1
18.2 What You Will Learn . 1
18.3 Running the Exercise . 1

8

18.4 Discussion . 1
18.5 Suggested Activities . 1

III Users Guide 2

19 Obtaining Credentials to Access Fermilab Computing Resources 1
19.1 Kerberos Authentication . 1
19.2 Fermilab Services Account . 2

20 Using git 1

21 art Run-time and Development Environments 1
21.1 The art Run-time Environment . 1
21.2 The art Development Environment 4

22 art Framework Parameters 1
22.1 Parameter Types . 1
22.2 Structure of art Configuration Files 2
22.3 Services . 4

22.3.1 System Services . 4
22.3.2 FloatingPointControl . 4
22.3.3 Message Parameters . 5
22.3.4 Optional Services . 5
22.3.5 Sources . 5
22.3.6 Modules . 5

23 Job Configuration in art: FHiCL 1
23.1 Basics of FHiCL Syntax . 1

23.1.1 Specifying Names and Values 1
23.1.2 FHiCL-reserved Characters and Keywords 3

23.2 FHiCL Keywords Reserved to art 4
23.3 Structure of a FHiCL Run-time Configuration File for art 5
23.4 Order of Elements in a FHiCL Run-time Configuration File for art . 8
23.5 The physics Portion of the FHiCL Configuration 10
23.6 Choosing and Using Module Labels and Path Names 11
23.7 Scheduling Strategy in art . 12
23.8 Scheduled Reconstruction using Trigger Paths 14
23.9 Reconstruction On-Demand . 16
23.10Bits and Pieces . 16

24 Data Products 1
24.1 Overview . 1
24.2 The Full Name of a Data Product 1

25 Producer Modules 1

9

26 Analyzer Modules 1

27 Filter Modules 1

28 art Services 1

29 art Input and Output 1
29.1 Input Modules . 1

29.1.1 Configuring Input Modules to Read from Files 1
29.2 Output Filtering . 3
29.3 Configuring Output Modules . 5

30 art Misc Topics that Will Find Home 1
30.0.1 The Bookkeeping Structure and Event Sequencing Imposed

by art . 1
30.1 Rules for Module Names . 2
30.2 Data Products and the Event Data Model 4
30.3 Basic art Rules . 4
30.4 Compiling, Linking, Loading and Executing C++ Classes and art

Modules . 5
30.5 Shareable Libraries and art . 7
30.6 Namespaces, art and the Workbook 8
30.7 Orphans . 9
30.8 Code Guards . 9
30.9 Inheritance . 11

30.9.1 Introduction . 11
30.9.2 Homework . 11
30.9.3 Discussion . 12

30.10Inheritance Relic . 12
30.11Pointers . 13
30.12RootOutput and table of event IDs 13
30.13Troubleshooting . 14

IV Index 15

Index 16

10

art Glossary

abstraction the process by which data and programs are defined with a rep-
resentation similar in form to its meaning (semantics), while
hiding away the implementation details. A system can have
several abstraction layers whereby different meanings and amounts
of detail are exposed to the programmer (adapted from Wikipedia’s
entry for “Abstraction (computer science)”.

analyzer module an art module that may read information from the current
event but that may not add information to it; e.g., a module
to fill histograms or make printed output

API Application Programming Interface

art The art framework (art is not an acronym) is the software
framework developed for common use by the Intensity Fron-
tier experiments to develop their offline code and non-real-time
online code

art module see module

art path a FHiCL sequence of art moduleLabels that specifies the work
the job will do

artdaq a toolkit that lives on top of art for building high-performance
event-building and event-filtering systems; this toolkit is de-
signed to support efficient use of multi-core computers and
GPUs. A technical paper on artdaq can be found at .

bash a UNIX shell scripting language that is used by some of the
support scripts in the workbook exercises

boost a class library with new functionality that is being prototyped
for inclusion in future C++ standards

build system turns source code into object files, puts them into a shared li-
brary, links them with other libraries, and may also run tests,
deploy code to production systems and create some documen-
tation.

11

buildtool a Fermilab-developed tool (part of cetbuildtools) to compile,
link and run tests on the source code of the Workbook

catch See exception in a C++ reference

cetbuildtools a build system developed at Fermilab

CETLIB a utility library used by art (developed and maintained by the
art team) to hold information that does not fit naturally into
other libraries

class The C++ programming language allows programmers to define
program-specific data types through the use of classes. Classes
define types of data structures and the functions that operate
on those data structures. Instances of these data types are
known as objects. Other object oriented languages have similar
concepts.

CLHEP a set of utility classes; the name is an acronym for a Class
Library for HEP

collection

configuration see run-time configuration

const member function a member function of a class that does not change the
value of non-mutable data members; see mutable data member

constructor a function that (a) shares an identifier with its associated class,
and (b) initializes the members of an object instantiated from
this class

DAQ data aquisition system

data handling

Data Model see Event Data Model

data product Experiment-defined class that can represent detector signals,
reconstructed data, simulated events, etc. In art , a data prod-
uct is the smallest unit of information that can be added to or
retrieved from an event.

data type See type

declaration (of a class) the portion of a class that specifies its type, its name,
and any data members and/or member functions it has

destructor a function that (a) has the same identifier as its associated class
but prefaced with a tilde (∼), and (b) is used to deallocate
memory and do other cleanup for a class object and its class
members when the object is destroyed

12

Doxygen a system of producing reference documentation based on com-
ments in source code

ED a prefix used in art (e.g., for module types) meaning event-data

EDAnalyzer see analyzer module

EDFilter see filter module

EDOutput see output module

EDProducer see producer module

EDSource see source module

Event In HEP there are two notions of the word event that are in
common use; see event (unit of information) or event (interac-
tion). In this documentation suite, unless otherwise indicated,
we mean the former.

Event (interaction) An event (unit of data) may contain more than one fun-
damental interaction; the science goal is always to identify in-
dividual fundamental interactions and determine their prop-
erties. It is common to use the word event to refer to one
of the individual fundamental interactions. In the near detec-
tor of a high-intensity neutrino experiment, for example, there
may be multiple neutrino interactions within the unit of time
that defines a single event (unit of information). Similarly, in
a colliding-beam experiment, an event (unit of information)
corresponds to the information from one beam crossing, dur-
ing which time there may be multiple collisions between beam
particles.

Event (unit of information) In the general HEP sense, an event is a set of raw
data associated in time, plus any information computed from
the raw data; event may also refer to a simulated version of
same. Within art , the representation of an event (unit of infor-
mation) is the classs art::Event, which is the smallest unit
of information that art can process. An art::Event contains
an event identifier plus an arbitrary number of data-products;
the information within the data-products is intrinsically ex-
periment dependent and is defined by each experiment. For
bookkeeping convenience, art groups events into a heirarchy:
a run contains zero or more subRuns and a subRun contains
zero or more events.

Event Data Model (EDM) Representation of the data that an experiment col-
lects, all the derived information, and historical records neces-
sary for reproduction of result

13

event loop within an art job, the set of steps to perform in order to execute
the per-event functions for each event that is read in, including
steps for begin/end-job, begin/end-run and begin/end-subRun

event-data all of the data products in an experiment’s files; plus the meta-
data that accompanies them. The HEP software community
has adopted the word event-data to refer to the software de-
tails of dealing with the information found in events, whether
the events come from experimental data or simulations.

event-data file a collective noun to describe both data files and files of simu-
lated events

exception, to throw a mechanism in C++ (and other programming languages)
to stop the current execution of a program and transfer control
up the call chain; also called catch

experiment code see user code

external product for a given experiment, this is a software product that the ex-
periment’s software (within the art framework) does not build,
but that it uses; e.g., ROOT, Geant4, etc. At Fermilab exter-
nal products are managed by the in-house UPS/UPD system,
and are often called UPS products or simply products.

FermiGrid a batch system for submitting jobs that require large amounts
of CPU time

FHiCL Fermilab Hierarchical Configuration Language (pronounced “fickle”),
a language developed and maintained by the art team at Fer-
milab to support run-time configuration for several projects,
including art

FHiCL-CPP the C++ toolkit used to read FHiCL documents within art

filter module an art module that may alter the flow of processing modules
within an event; it may add information to the event

framework (art) The art framework is an application used to build physics pro-
grams by loading physics algorithms, provided as plug-in mod-
ules; each experiment or user group may write and manage
its own modules. art also provides infrastructure for common
tasks, such as reading input, writing output, provenance track-
ing, database access and run-time configuration.

framework (generic) an abstraction in which software providing generic func-
tionality can be selectively changed by additional user-written
code, thus providing application-specific software (significantly
abbreviated from Wikipedia’s entry for “software framework”);
note that the actual functionality provided by any given frame-
work, e.g., art , will be tailored to the given needs.

14

free function a function without data members; it knows only about agru-
ments passed to it at run time; see function and member func-
tion

Geant4 a toolkit for the simulation of the passage of particles through
matter, developed at CERN. http://geant4.cern.ch/

git a source code management system used to manage files in the
art Workbook; similar in concept to the older CVS and SVN,
but with enhanced functionality

handle a type of smart pointer that permits the viewing of information
inside a data product but does not allow modification of that
information; see pointer,data product

IF Intensity Frontier

ifdh sam a UPS product that allows art to use SAM as an external run-
time agent that can deliver remote files to local disk space and
can copy output files to tape. The first part of the name is an
acronym for Intensity Frontier Data Handling.

implementation the portion of C++ code that specifies the functionality of a
declared data type; where as a struct or class declaration (of
a data type) usually resides in a header file (.h or .hh), the
implementation usually resides in a separate source code file
(.cc) that “#includes” the header file

instance see instantiation

instantiation the creation of an object instance of a class in an OOP lan-
guage; an instantiated object is given a name and created in
memory or on disk using the structure described within its
class declaration.

jobsub-tools a UPS product that supplies tools for submitting jobs to the
Fermigrid batch system and monitoring them.

Kerberos a single sign-on, strong authentication system required by Fer-
milab for access to its computing resources

kinit a command for obtaining Kerberos credentials that allow access
to Fermilab computing resources; see Kerberos

member function (also called method) a function that is defined within (is a
member of) a class; they define the behavior to be exhibited
by instances of the associated class at program run time. At
run time, member functions have access to data stored in the
instance of the class with they are associated, and are thereby
able to control or provide access to the state of the instance.

15

http://geant4.cern.ch/

message facility a UPS product used by art and experiments’ code that provides
facilities for merging messages with a variety of severity levels,
e.g., informational, error, and so on; see also mf

message service

method see member function

mf a namespace that holds classes and functions that make up the
message facility used by art and by experiments that use art ;
see message facility

module a C++ class that obeys certain rules established by art and
whose source code file gets compiled into a shared object library
that can be dynamically loaded by art . An art module “plugs
into” a processing stream and performs a specific task on units
of data obtained using the Event Data Model, independent of
other running modules. See also moduleLabel

module type a keyword known to art in the parameter set describing an art
module; it specifies the name of a shared library to be loaded

moduleLabel a user-defined identifier whose value is a parameter set that art
will use to configure a module; see module and parameter set

Monte Carlo method a class of computational algorithms that rely on repeated
random sampling to obtain numerical results; i.e., by running
simulations many times over in order to calculate those same
probabilities heuristically just like actually playing and record-
ing your results in a real casino situation: hence the name
(Wikipedia)

mutable data member The keyword “mutable” is used to allow a particular data
member of const object to be modified. This is particularly
useful if most of the members should be constant but a few
need to be updateable (from highprogrammer.com).

namespace a container within a file system for a set of identifiers (names);
usually grouped by functionality, they are used to keep differ-
ent subsets of code distinguishable from one another; identical
names defined within different namespaces are disambiguated
via their namespace prefix

ntuple an ordered list of n elements used to describe objects such as
vectors or tables

object an instantiation of any data type, built-in types (e.g., int, dou-
ble, float) or class types; i.e., a location range in memory con-
taining an instantiation

object-oriented language a programming language that supports OOP; this usu-
ally means support for classes, including public and private

16

data and functions

object-oriented programming (OOP) a programming language model organized
around objects rather than procedures, where objects are quan-
tities of interest that can be manipulated. (In contrast, pro-
grams have been viewed historically as logical procedures that
read in data, process the data and produce output.) Objects
are defined by classes that contain attributes (data fields that
describe the objects) and associated procedures. See C++
class; object.

OOP see object oriented programming

output module an art module that writes data products to output file(s); it
may select a subset of data products in a subset of events; an
art module contains zero or more output modules

parameter set a C++ class, defined by FHICL-CPP, that is used to hold run-
time configuration for art itself or for modules and services
instantiated by art . In a FHiCL file, a parameter set is repre-
sented by a FHiCL table; see table

path a generic word based on the UNIX concept of PATH that refers
to a colon-separated list of directories used by art when search-
ing for various files (e.g., data input, configuration, and so on)

physics in art , physics is the label for a portion of the run-time con-
figuration of a job; this portion contains up to five sections,
each labeled with a reserved keyword (that together form a
parameter set within the FHiCL language); the parameters
are analyzers, producers, filters, trigger paths and end paths.

pointer a variable whose value is the address of (i.e., that points to) a
piece of information in memory. A native C++ pointer is often
referred to as a bare pointer. art defines different sorts of smart
pointers (or safe pointers) for use in different circumstances.
One commonly used type of smart pointer is called a handle.

process name a parameter to which the user assigns a mnemonic value iden-
tifying the physics content of the associated FHiCL parameter
set (i.e., the parameters used in the same FHiCL file). The pro-
cess name value is embedded into every data product created
via the FHiCL file.

producer module an art module that may read information from the current
event and may add information to it

product See either external product or data product

redmine an open source, web-based project management and bug-tracking

17

tool used as a repository for art code and related code and doc-
umentation

ROOT an HEP data management and data presentation package used
by art and supported by CERN; art is designed to allow output
of event-data to files in ROOT format, in fact currently it is
the only output format that art implements

ROOT files There are two types of ROOT files managed by art : (1) event-
data output files, and (2) the file managed by TFileService that
holds user-defined histograms, ntuples, trees, etc.

run a period of data collection, defined by the experiment (usually
delineates a period of time during which certain running condi-
tions remain unchanged); a run contains zero or more subRuns

run-time configuration (processing-related) structured documents describing all
processing aspects of a single job including the specification of
parameters and workflow; in art it is supplied by a FHiCL file;
see FHiCL

safe pointer see pointer

SAM (Sequential data Access via Metadata) a Fermilab-supplied
product that provides the functions of a file catalog, a replica
manager and some functions of a batch-oriented workflow man-
ager

scope

sequence (in FHiCL) one or more comma-separated FHiCL values delimited by
square brackets (

...

) in a FHiCL file is called a sequence (as distinct from a table)

service in art , a singleton-like object (type) whose lifetime and con-
figuration are managed by art , and which can by accessed by
module code and by other services by requesting a service han-
dle to that particular service. The service type is used to pro-
vide geometrical information, conditions and management of
the random number state; it is also used to implement some
internal functionality. See also T File Service

shared library

signature (of a function) the unique identifier of a C++ a function, which in-
cludes: (a) its name, including any class name or namespace
components, (b) the number and type of its arguments, (c)
whether it is a member function, (d) whether it is a const func-
tion (Note that the signature of a function does not include its
return type.)

18

site As used in the art documentation, a site is a unique combi-
nation of experiment and institution; used to refer to a set of
computing resources configured for use by a particular experi-
ment at a particular institution. This means that, for example,
the Workbook environment on a Mu2e-owned computer at Fer-
milab will be different than that on an Mu2e-owned computer
at LBL. Also, the Workbook environment on a Mu2e-owned
computer at Fermilab will be different from that on an LBNE-
owned computer at Fermilab.

smart pointer see pointer

source (refers to a data source) the name of the parameter set in-
side an FHiCL file describing the first step in the workflow for
processing an event; it reads in each event sequentially from a
data file or creates an empty event; see also source code; see
also EDsource

source code code written in C++ (the programming language used with
art) that requires compilation and linking to create an exe-
cutable program

source module an art module that can initiate an art path by reading in
event(s) from a data file or by creating an empty event; it
is the first step of the processing chain

standard library, C++ the C++ standard library of routines

std identifier for the namespace used by the C++ standard library

struct identical to a C++ class except all members are public (instead
of private) by default

subRun a period of data collection within a run, defined by the exper-
iment (it may delineate a period of time during which certain
run parameters remain unchanged); a SubRun is contained
within a run; a subRun contains zero or more events

table (in FHiCL) a group of FHiCL definitions delimited by braces ({ ... }) is
called a table; within art , a FHiCL table gets turned into an
object called a parameter set. Consequently, a FHiCL table is
typically called a parameter set. See parameter set.

TFileService an art service used by all experiments to give each module
a ROOT subdirectory in which to place its own histograms,
TTrees, and so on; see TTrees and ROOT

truth information One use of simulated events is to develop, debug and charac-
terize the algorithms used in reconstruction and analysis. To
assist in these tasks, the simulation code often creates data

19

products that contain detailed information about the right an-
swers at intermediate stages of reconstruction and analysis;
they also write data products that allow the physicist to ask
“is this a case in which there is an irreducible background or
should I be able to do better?” This information is called the
truth information, the Monte Carlo truth or the God’s block.

TTrees a ROOT implementation of a tree; see tree and ROOT

type variables and objects in C++ must be classified into types, e.g.,
built-in types (integer, boolean, float, character, etc.), more
complex user-defined classes/structures and typedefs; see class,
struct, and typedef. The word type in the context of C++ and
art is the same as data type unless otherwise stated.

UPS/UPD a Fermliab-developed system for distributing software products

user code experiment-specific and/or analysis-specific C++ code that uses
the art framework; this includes any personal code you write
that uses art .

variable a storage location and an associated symbolic name (an iden-
tifier) which contains some known or unknown quantity or in-
formation, a value. The variable name is the usual way to
reference the stored value; this separation of name and con-
tent allows the name to be used independently of the exact
information it represents.

20

21

List of Figures

2.1 The principal components of the art documentation suite 3
2.2 The geometry of the toy detector; the figures are described in the

text. A uniform magnetic field of strength 1.5 T is oriented in the
+z direction. 17

2.3 Event display of a typical simulated event in the toy detector. . . . 19
2.4 Event display of another simulated event in the toy detector; a K−

(blue) is produced with a very shallow trajectory and it does not
intersect any detector shells while the K+ (red) makes five hits in
the inner detector and seven in the outer detector 20

2.5 The final plot showing 870 reconstructed events out of 1000 gener-
ated events . 21

3.1 Layers in the art Workbook (left) and experiment-specific (right)
computing environments . 5

5.1 Memory diagram at the end of a run of Classes/v1/ptest.cc 22
5.2 Memory diagram at the end of a run of Classes/v6/ptest.cc 33

8.1 Elements of the art run-time environment for the first Workbook
exercise . 21

9.1 Elements of the art development environment as used in most of
the Workbook exercises; the arrows denote information flow, as de-
scribed in the text. 10

21.1 Elements of the art run-time environment, just for running the Toy
Experiment code for the Workbook exercises 2

21.2 Elements of the art run-time environment for running an experi-
ment’s code (everything pre-built) 2

21.3 Elements of the art run-time environment for a production job with
officially tracked inputs . 3

21.4 Elements of the art development environment as used in most of the
Workbook exercises . 4

22

21.5 Elements of the art development environment for building the full
code base of an experiment . 5

21.6 Elements of the art development environment for an analysis project
that builds against prebuilt release 5

30.1 Illustration of compiled, linked “regular” C++ classes (not art mod-
ules) that can be used within the art framework. Many classes can
be linked into a single shared library. 6

30.2 Illustration of compiled, linked art modules; each module is built
into a single shared library for use by art 7

23

24

List of Tables

2.1 Compiler flags for the optimization levels defined by cetbuildtools;
compiler options not related to optimization or debugging are not
included in this table. 13

2.2 Units used in the Workbook . 18

4.1 Site-specific setup procedure for IF (γ) Experiments at Fermilab . . 2

6.1 For selected UPS Products, this table gives the names of the asso-
ciated namespaces. The UPS products that do not use namespaces
are discussed in Section 6.6.4. ‡The namespace tex is also used by
the art Workbook, which is not a UPS product. 9

7.1 Experiment-specific Information for New Users 2
7.2 Login machines for running the Workbook exercises 2

8.1 The input files provided by for the Workbook exercises 2

9.1 Compiler and Linker Flags for a Profile Build 31

22.1 art Floating Point Parameters . 4
22.2 art Message Parameters . 5

25

26

Listings

5.1 The form of a class declaration . 17
5.2 The contents of v1/Point.h . 19
5.3 The contents of v1/ptest.cc 19
8.1 Sample output from running hello.fcl 4
8.2 The source parameter set from hello.fcl 6
8.3 The physics parameter set from hello.fcl 7
8.4 The remainder of hello.fcl . 8
8.5 A FHiCL fragment illustrating module labels 13
8.6 Example of the value of LD LIBRARY PATH 19
9.1 Example of output created by setup for development 6
9.2 The contents of First module.cc 13
9.3 An alternate layout for First module.cc 24
9.4 The file art-workbook/FirstModule/CMakeLists.txt 30
9.5 The physics parameter set for all.fcl 35
9.6 The contents of First.h in the 3 file model 38
9.7 The contents of First.cc in the 3 file model 39
9.8 The contents of First module.cc in the 3 file model 39
10.1 The output produced by Optional module.cc when run using

optional.fcl . 6
29.1 Reading in a ROOT data file . 1
29.2 Reading in a ROOT data file . 2
29.3 Reading in a ROOT data file . 2
29.4 Reading in a ROOT data file . 2
29.5 Reading in a ROOT data file . 3
29.6 Reading in a ROOT data file . 3
30.1 Module source sample . 3

27

0–1

Part I1

Introduction2

art Documentation

Chapter 1: Conventions Used in this Documentation 1–1

1 Conventions Used in this Documenta-1

tion2

Most of the material in this introduction and in the Workbook is written so3

that it can be understood by beginners in HEP computing; if it is not, please4

let us know (see Section 2.4)!5

In some places, however, it will be necessary for a paragraph or two to be written6

for experts. Such paragraphs will be marked with a “dangerous bends” symbol7

in the margin, as shown at right. Beginners can skip these sections on first8

reading and come back to them at a later time.9

The first instance of each term that is defined in the glossary is written in italics10

followed by a γ (Greek letter gamma), e.g., framework(γ).11

Occasionally, text will be called out to make sure that you don’t miss it. Im-12

portant or tricky terms and concepts will be marked with an “pointing finger”13

symbol in the margin, as shown at right.14

Items that are even trickier will be marked with a “bomb” symbol in the margin,15

as shown at right. You really want to avoid the problems they describe.16

Text that refers in particular to Fermilab-specific information is marked with a17

Fermilab picture, as shown at right.18

Text that refers in particular to information about using art at sites other19

than Fermilab is marked with a “generic site” picture, as shown at right. A20

site is defined as a unique combination of experiment and institution, and is21

used to refer to a set of computing resources configured for use by a particular22

experiment at a particular institution.23

Experiment-specific information will be kept to an absolute minimum; where24

these items appear, they will be marked with an experiment-specific icon, e.g.,25

the Mu2e icon at right.26

Unix commands that you must type are shown preceded by a dollar sign prompt27

($) in typewriter font. Do not type the $! Portions of the command for28

which you must substitute actual values are surrounded by angle brackets (<29

... >).30

art Documentation

Chapter 1: Conventions Used in this Documentation 1–2

Unix commands that are continued onto a second line use a single backslash as1

the last character in the first line (just before a carriage return; no spaces may2

follow it). This convention is used in this documentation, as well.3

Computer output from a command is shown in typewriter font.4

art Documentation

Chapter 2: Introduction to the art Event Processing Framework 2–1

2 Introduction to the art Event Processing1

Framework2

2.1 What is art and Who Uses it?3

art(γ) is an event-processing framework(γ) developed and supported by the Fer-4

milab Scientific Computing Division (SCD). The art framework is used to build5

physics programs by loading physics algorithms, provided as plug-in modules.6

Each experiment or user group may write and manage its own modules. art also7

provides infrastructure for common tasks, such as reading input, writing output,8

provenance tracking, database access and run-time configuration.9

The initial clients of art are the Fermilab Intensity Frontier experiments but10

nothing prevents other experiments from using it, as well. The name art is11

always written in italic lower case; it is not an acronym.12

art is written in C++ and is intended to be used with user code written in13

C++. (User code includes experiment-specific code and any other user-written,14

non-art , non-external-product(γ) code.)15

art has been designed for use in all places that an experiment might require a16

software framework, including:17

• high-level software triggers18

• online data monitoring19

• calibration20

• reconstruction21

• analysis22

• simulation23

art is not designed for use in real-time environments, such as the direct interface24

with data-collection hardware.25

art Documentation

Chapter 2: Introduction to the art Event Processing Framework 2–2

The Fermilab SCD has also developed a related product named artdaq(γ), a1

layer that lives on top of art and provides features to support the construction2

of data-acquisition (DAQ(γ)) systems based on commodity servers. Further3

discussion of artdaq is outside the scope of this documentation.4

The design of art has been informed by the lessons learned by the many High5

Energy Physics (HEP) experiments that have developed C++ based frameworks6

over the past 20 years. In particular, it was originally forked from the framework7

for the CMS experiment, cmsrun.8

Experiments using art are listed at artdoc.fnal.gov under “Intensity Frontier9

Links.”10

2.2 Why art?11

In all previous experiments at Fermilab, and in most previous experiments else-12

where, infrastructure software (i.e., the framework, broadly construed – mostly13

forms of bookkeeping) has been written in-house by each experiment, and each14

implementation has been tightly coupled to that experiment’s code. This tight15

coupling has made it difficult to share the framework among experiments, re-16

sulting in both great duplication of effort and mixed quality.17

art was created as a way to share a single framework across many experiments.18

In particular, the design of art draws a clear boundary between the framework19

and the user code; the art framework (and other aspects of the infrastructure)20

is developed and maintained by software engineers who are specialists in the21

field, not by physicists who are primarily interested in the science. Experiments22

use art as an external package. Despite some constraints that this separation23

imposes, it has improved the overall quality of the framework and reduced the24

duplicated effort. Therefore each experiment can build their physics software25

on top of a more complete and more robust foundation. Our goal is that this26

will make it easier to develop and maintain physics software, thereby improving27

the overall quality of the physics results.28

2.3 C++ and C++1129

In 2011, the International Standards Committee voted to approve a new stan-30

dard for C++, called C++ 11.31

Much of the existing user code was written prior to the adoption of the C++ 1132

standard and has not yet been updated. As you work on your experiment, you33

are likely to encounter both code written the new way and code written the old34

way. Therefore, the Workbook will often illustrate both practices.35

A very useful compilation of what is new in C++ 11 can be found at36

art Documentation

http://artdoc.fnal.gov

Chapter 2: Introduction to the art Event Processing Framework 2–3

https://cdcvs.fnal.gov/redmine/projects/gm2public/wiki/CPP20111

This reference material is written for advanced C++ users.2

2.4 Getting Help3

Please send your questions and comments to art-users@fnal.gov. More support4

information is listed at http://artdoc.fnal.gov/artsupport.shtml.5

2.5 Overview of the Documentation Suite6

When complete, this documentation suite will contain several principal compo-7

nents, or volumes: the introduction that you are reading now, a Workbook, a8

Users Guide, a Reference Manual, a Technical Reference and a Glossary. At the9

time of writing, drafts exist for the Workbook, the Users Guide and the Glossary.10

The components in the documentation suite are illustrated in Figure 2.1.11

Figure 2.1: The principal components of the art documentation suite

2.5.1 The Introduction12

This introductory volume is intended to set the stage for using art . It intro-1

duces art , provides background material, describes some of the software tools on2

art Documentation

https://cdcvs.fnal.gov/redmine/projects/gm2public/wiki/CPP2011
http://artdoc.fnal.gov/artsupport.shtml

Chapter 2: Introduction to the art Event Processing Framework 2–4

which art depends, describes its interaction with related software and identifies3

prerequisites for successfully completing the Workbook exercises.4

2.5.2 The Workbook5

The Workbook is a series of standalone, self-paced exercises that will introduce6

the building blocks of the art framework and the concepts around which it is7

built, show practical applications of this framework, and provide references to8

other portions of the documentation suite as needed. It is targeted towards9

physicists who are new users of art , with the understanding that such users will10

frequently be new to the field of computing for HEP and to C++.11

One of the Workbook’s primary functions is training readers how and where12

to find more extensive documentation on both art and external software tools;13

they will need this information as they move on to develop and use the scientific14

software for their experiment.15

The Workbook assumes some basic computing skills and some basic familiarity16

with the C++ computing language; Chapter 5 provides a tutorial/refresher for17

readers whose C++ skills aren’t quite up-to-speed.18

The Workbook is written using recommended best practices that have become19

current since the adoption of C++ 11.20

Because art is being used by many experiments, the Workbook exercises are21

designed around a toy experiment that is greatly simplified compared to any22

actual experimental detector, but it incorporates enough richness to illustrate23

most of the features of art . The goal is to enable the physicists who work through24

the exercises to translate the lessons learned there into the environment of their25

own experiments.26

2.5.3 Users Guide27

The Users Guide is targeted at physicists who have reached an intermediate level28

of competence with art and its underlying tools. It contains detailed descriptions29

of the features of art , as seen by the physicists. The Users Guide will provide30

references to the external products(γ) on which art depends, information on how31

art uses these products, and as needed, documentation that is missing from the32

external products’ proper documentation.33

2.5.4 Reference Manual34

The Reference Manual will be targeted at physicists who already understand1

the major ideas underlying art and who need a compact reference to the Appli-2

art Documentation

Chapter 2: Introduction to the art Event Processing Framework 2–5

cation Programmer Interface (API (γ)). The Reference Manual will likely be3

generated from annoted source files, possibly using Doxygen(γ).4

2.5.5 Technical Reference5

The Technical Reference will be targeted at the experts who develop and main-6

tain art ; few physicists will ever want or need to consult it. It will document the7

internals of art so that a broader group of people can participate in development8

and maintenance.9

2.5.6 Glossary10

The glossary will evolve as the documentation set grows. At the time of writing,11

it includes definitions of art-specific terms as well as some HEP, Fermilab, C++12

and other relevant computing-related terms used in the Workbook and the Users13

Guide.14

2.6 Some Background Material15

This section defines some language and some background material about the16

art framework that you will need to understand before starting the Work-17

book.18

2.6.1 Events and Event IDs19

In almost all HEP experiments, the core idea underlying all bookkeeping is the20

event(γ). In a triggered experiment, an event is defined as all of the information21

associated with a single trigger; in an untriggered, spill-oriented experiment, an22

event is defined as all of the information associated with a single spill of the beam23

from the accelerator. Another way of saying this is that an event contains all of24

the information associated with some time interval, but the precise definition of25

the time interval changes from one experiment to another 1. Typically these time26

intervals are a few nanoseconds to a few tens of mircoseconds. The information27

within an event includes both the raw data read from the Data Acquisition28

System (DAQ) and all information that is derived from that raw data by the1

reconstruction and analysis algorithms. An event is the smallest unit of data2

that art can process at one time.3

1There is a second, distinct, sense in which the word event is sometimes used; it is used
as a synonym for a fundamental interaction; see the glossary entry for event (fundamental
interaction)(γ). Within this documentation suite, unless otherwise indicated, the word event
refers to the definition given in the main body of the text.

art Documentation

Chapter 2: Introduction to the art Event Processing Framework 2–6

In a typical HEP experiment, the trigger or DAQ system assigns an event iden-4

tifier (event ID) to each event; this ID uniquely identifies each event, satisfying5

a critical requirement imposed by art that each event be uniquely identifable6

by its event ID. This requirement also applies to simulated events.7

The simplest event ID is a monotonically increasing integer. A more common8

practice is to define a multi-part ID and art has chosen to use a three-part ID,9

including:10

• run(γ) number11

• subRun(γ) number12

• event(γ) number13

In a typical experiment, the event number will be incremented every event.14

When some condition occurs, the event number will be reset to 1 and the subRun15

number will be incremented, keeping the run number unchanged. This cycle will16

repeat until some other condition occurs, at which time the event number will be17

reset to 1, the subRun number will be reset to 0 (0 not 1 for historical reasons)18

and the run number will be incremented.19

art does not define what conditions cause these transitions; those decisions are20

left to each experiment. Typically experiments will choose to start new runs or21

new subRuns when one of the following happens: a preset number of events is22

acquired; a preset time interval expires; a disk file holding the ouptut reaches a23

preset size; or certain running conditions change.24

art requires only that a subRun contain zero or more events and that a run25

contain zero or more subRuns.26

When an experiment takes data, events read from the DAQ are typically written27

to disk files, with copies made on tape. art imposes only weak constraints on28

the event sequence within a file. The events in a single subRun may be spread29

over several files; conversely a single file may contain many runs, each of which30

contains many subRuns.31

2.6.2 art Modules and the Event Loop32

Users provide executable code to art in chunks called art modules(γ) that“plug33

into” a processing stream and operate on event data. An art module (also called34

simply a module) is an art-ified C++ class – more on this below.35

The concept of reading events and, in response to each new event, calling the36

appropriate methods of each module, is referred to as the event loop(γ).37

The concepts of the art module and the event loop will be illustrated via the38

following discussion of how art processes a job.1

The simplest command to run art looks like:2

art Documentation

Chapter 2: Introduction to the art Event Processing Framework 2–7

$ art -c run-time-configuration-file.fcl3

The run-time configuration file(γ) is a text file that tells one run of art what4

it should do. Run-time configuration files for art are written in the Fermilab5

Hierarchical Configuration Language FHiCL (γ), pronounced “fickle”) and the6

filenames end in .fcl. As you progress through the Workbook, this language7

and the conventions used in the run-time configuration file will be explained;8

the full details are available in Chapter 23 of the Users Guide. (The run-time9

configuration file is often referred to as simply the configuration file or even10

more simply as just the configuration(γ).)11

When art starts up, it reads the configuration file to learn what input files12

it should read, what user code it should run and what output files it should13

write. As mentioned above, an experiment’s code (including any code written14

by individual experimenters) is provided in units called art modules. A mod-15

ule is simply a C++ class, provided by the experiment or user, that obeys a16

set of rules defined by art and whose source code(γ) file gets compiled into a17

shared object(γ) library that can be dynamically loaded by art . These rules will18

be explained as you work through the Workbook and they are summarized in19

Section 30.3. 2
20

The code base of a typical experiment will contain many C++ classes. Only a21

small fraction of these will be modules; most of the rest will be ordinary C++22

classes that are used within modules3.23

In some circumstances the configuration file tells art the order in which to run24

the modules, but other times, art is left to determine, on its own, the correct25

order of execution (reconstruction on demand). In either case, each module in26

the processing stream must run independently of the others.27

art requires that each module provide some code that will be called once for28

every event. Imagine each event as a widget on an assembly line, and each29

module as a worker that needs to perform a set task on each widget. Further,30

workers must find out if they need to do some start-up or close-down jobs.31

Following this metaphor, any module may provide code to be called at the32

following times:33

• at the start of the art job34

• at the end of the art job35

• at the start of each run36

• at the end of each run37

• at the start of each SubRun1

2Many programming languagues have an idea named module; the use of the term module
by art and in this documentation set is an art-specific idea.

3art defines a few other specialized roles for C++ classes; you will encounter these in
Sections 2.6.4 and 2.6.5.

art Documentation

Chapter 2: Introduction to the art Event Processing Framework 2–8

• at the end of each SubRun2

For those of you who are familiar with inheritance in C++, a module class3

(i.e., a “module”) must inherit from one of a few different module base classes.4

Each module class must override one pure-virtual member function from the5

base class and it may override other virtual member functions from the base6

class.7

After art completes its initialization phase (intentionally not detailed here), it8

performs the following steps:9

1. calls the constructor(γ) of every module in the configuration10

2. calls the beginJob member function(γ) of every module that provides one11

3. reads one event from the input source, and for that event12

(a) determines if it is from a run different from that of the previous event13

(true for first event in loop)14

(b) if so, calls the beginRun member function of each module that pro-15

vides one16

(c) determines if the event is from a subRun different from that of the17

previous event (true for first event in loop)18

(d) if so, calls the beginSubRun member function of each module that19

provides one20

(e) calls each module’s (required) per-event member function21

4. moves to the next event and repeats the above per-event steps until it22

encounters a new subRun23

5. closes out the current subRun by calling the endSubRun method of each24

module that provides one25

6. repeats steps 4 and 5 until it encounters a new run26

7. closes out the current run by calling the endRun method of each module27

that provides one28

8. repeats steps 3 through 7 until it reaches the end of the source29

9. calls the endJob method of each module that provides one30

10. calls the destructor(γ) of each module31

This entire set of steps comprises the event loop. Note that any given source32

file may contain runs, subRuns and/or events that are not contiguous; “next”33

in the above means “next in the file,” not necessarily the next numerically. And34

when one file is closed and a new one opened, the “next” event can be anything.35

One of art ’s most visible jobs is controlling the event loop.1

art Documentation

Chapter 2: Introduction to the art Event Processing Framework 2–9

2.6.3 Module Types2

Every art module must be one of the following five types, which are defined3

by the ways in which they interact with each event and with the event loop:4

5

analyzer module(γ) May inspect information found in the event but may6

not add new information to the event; described in Chapter 267

producer module(γ) May inspect information found in the event and may8

add new information to the event; described in Chapter 259

filter module(γ) Same functions as a Producer module but may also tell10

art to skip the processing of some, or all, modules for the current event;11

may also control which events are written to which output; described in12

Chapter 27.13

source module(γ) Reads events, one at a time, from some source; art re-14

quires that every art job contain exactly one source module. A source15

is often a disk file but other options exist and will be described in the16

Workbook and Users Guide.17

output module(γ) Reads an event from memory and writes it to an output;18

an art job may contain zero or more output modules. An ouptut is often19

a disk file but other options exist and will be described in the Workbook20

and in21

Note that no module may change information that is already present in an event.22

23

What does an analyzer do if it may neither alter information in an event nor24

add to it? Typically it creates printout and it creates ROOT files containing25

histograms, trees(γ) and nuples(γ) that can be used for downstream analysis.26

(If you have not yet encountered these terms, the Workbook will provide expla-27

nations as they are introduced.)28

Most beginners will only write analyzer modules and filter modules; readers29

with a little more experience may also write producer modules. The Workbook30

will provide examples of all three. Few people other than art experts and each31

experiment’s software experts will write source or output modules, however, the32

Workbook will teach you what you need to know about configuring source and33

output modules.34

2.6.4 art Data Products35

This section introduces more ideas and terms dealing with event information1

that you will need as you progress through the Workbook.2

art Documentation

Chapter 2: Introduction to the art Event Processing Framework 2–10

The word data product(γ) is used in art to mean the unit of information that3

user code may add to an event or retrieve from an event. A typical experiment4

will have the following sorts of data products:5

1. The DAQ system will package the raw data into data products, perhaps6

one or two data products for each major subsystem.7

2. Each module in the reconstruction chain will create one or more data8

products.9

3. Some modules in the analysis chain will produce data products; others10

may just make histograms and write information in non-art formats for11

analysis outside of art ; they may, for example, write user defined ROOT12

TTrees.13

4. The simulation chain will usually create many data products that describe14

properties of the simulated event; these data products can be used to15

develop, debug and characterize the reconstruction algorithms.16

Because these data products are intrinsically experiment dependent, each ex-17

periment defines its own data products. In the Workbook, you will learn about18

a set of data products designed for use with the toy experiment. There are a19

small number of data products that are defined by art and that hold bookkeep-20

ing information; these will be described as you encounter them in the Work-21

book.22

A data product is just a C++ type(γ) (a class, struct(γ) or typedef) that obeys23

a set of rules defined by art ; these rules are very different than the rules that24

must be followed for a class to be a module . A data product can be a single25

integer, an large complex class hierarchy, or anything in between.26

Very often, a data product is a collection(γ) of some experiment-defined type.27

The C++ standard libraries define many sorts of collection types; art supports28

many of these and also provides a custom collection type named cet::map vector29

. Workbook exercises will clarify the data product and collection type con-30

cepts.31

2.6.5 art Services32

Previous sections of this Introduction have introduced the concept of C++33

classes that have to obey a certain set of rules defined by art , in particular,34

modules in Section 2.6.2 and data products in Section 2.6.4. art services(γ) are35

yet another example of this.36

In a typical art job, two sorts of information need to be shared among the37

modules. The first sort is stored in the data products themselves and is passed1

from module to module via the event. The second sort is not associated with2

each event, but rather is valid for some aggregation of events, subRuns or runs,3

or over some other time interval. Three examples of this second sort include4

art Documentation

Chapter 2: Introduction to the art Event Processing Framework 2–11

the geometry specification, the conditions information4 and, for simulations, the5

table of particle properties.6

To provide managed access to the second sort of information, art supports an7

idea named art services (again, shortened to services). Services may also be8

used to provide certain types of utility functions. Again, a service in art is just9

a C++ class that obeys a set of rules defined by art . The rules for services are10

different than those for modules or data products.11

art implements a number of services that it uses for internal functions, a few12

of which you will encounter in the first couple of Workbook exercises. The13

message service(γ) is used by both art and experiment-specific code to limit14

printout of messages with a low severity level and to route messages to different15

destinations. It can be configured to provide summary information at the end of16

the art job. The TFileService(γ) and the RandomNumberGenerator service17

are not used internally by art , but are used by most experiments. Experiments18

may also create and implement their own services.19

After art completes its initialization phase and before it constructs any modules20

(see Section 2.6.2), it21

1. reads the configuration to learn what services are requested22

2. calls the constructor of each requested service23

Once a service has been constructed, any code in any module can ask art for24

a smart pointer(γ) to that service and use the features provided by that ser-25

vice. Similarly, services are available to a module as soon as the module is26

constructed.27

It is also legal for one service to request information from another service as28

long as the dependency chain does not have any loops. That is, if Service29

A uses Service B, then Service B may not use Service A, either directly or30

indirectly.31

For those of you familiar with the C++ Singleton Design Pattern, an art service32

has some differences and some similarities to a Singleton. The most important33

difference is that the lifetime of a service is managed by art , which calls the con-34

structors of all services at a well-defined time in a well-defined order. Contrast35

this with the behavior of Singletons, for which the order of initialization is un-36

defined by the C++ standard and which is an accident of the implementation37

details of the loader. art also includes services under the umbrella of its power-38

ful run-time configuration system; in the Singleton Design pattern this issue is1

simply not addressed.2

4The phrase “conditions information” is the currently fashionable name for what was once
called “calbration constants;” the name change came about because most calibration infor-
mation is intrinsically time-dependent, which makes “constants” a poor choice of name.

art Documentation

Chapter 2: Introduction to the art Event Processing Framework 2–12

Table 2.1: Compiler flags for the optimization levels defined by cetbuildtools;
compiler options not related to optimization or debugging are not included in
this table.

Name flags

debug -O0 -g
prof -O3 -g -fno-omit-frame-pointer -DNDEBUG
opt -O3 -DNDEBUG

2.6.6 Shareable Libraries and art3

When code is executed within the art framework, art , not the experiment,4

provides the main executable. The experiment provides its code to the art5

executable in the form of shareable object libraries that art loads dynamically6

at run time; these libraries are also called dynamic load libraries or plugins7

and their filenames are required to end in .so. For more information about8

shareable libraries, see Section 30.5.9

2.6.7 Build Systems and art10

To make an experiment’s code available to art , the source code must be compiled11

and linked (i.e., built) to produce shareable object libraries (Section 2.6.6).12

The tool that creates the .so files from the C++ source files is called a build13

system(γ).14

Experiments that use art are free to choose their own build systems, as long as15

the system follows the conventions that allow art to find the name of the .so16

file given the name of the module class. The Workbook will use a build system17

named cetbuildtools, which is a layer on top of cmake5.18

The cetbuildtools system defines three standard compiler optimization levels,19

called “debug”, “profile” and “optimized”; the last two are often abbreviated20

“prof” and “opt”. When code is compiled with the “opt” option, it runs as21

quickly as possible but is difficult to debug. When code is compiled with the22

“debug” option, it is much easier to debug but it runs more slowly. When code23

is compiled with the “prof” option the speed is almost and fast as for an “opt”24

build and the most useful subset of the debugging information is retained. The25

“prof” build retains enough debugging information that one may use a profiling26

tool to identify in which functions the program spends most of its time; hence27

its name “profile”.28

The compiler options corresponding to the three levels are listed in Table 2.1.29

30

5cetbuildtools is also used to build art itself.

art Documentation

Chapter 2: Introduction to the art Event Processing Framework 2–13

2.6.8 External Products31

As you progress through the Workbook, you will see that the exercises use some32

software packages that are part of neither art nor the toy experiment’s code.33

The Workbook code, art and the software for your experiment all rely heavily1

on some external tools and, in order to be an effective user of art-based HEP2

software, you will need at least some familiarity with them; you may in fact3

need to become expert in some.4

These packages and tools are referred to as external products(γ) (sometimes5

called simply products).6

An initial list of the products you will need to become familiar with includes:7

art the event processing framework8

FHiCL the run-time configuration language used by art9

CETLIB a utility library used by art10

MF(γ) a message facility that is used by art and by (some) experiments that11

use art12

ROOT an analysis, data presentation and data storage tool widely used in13

HEP14

CLHEP(γ) a set of utility classes; the name is an acronym for Class Library15

for HEP16

boost(γ) a class library with new functionality that is being prototyped for17

inclusion in future C++ standards18

gcc the GNU C++ compiler and run-time libraries; both the core language and19

the standard library are used by art and by your experiment’s code.20

git(γ) a source code management system that is used for the Workbook and21

by some experiments; similar in concept to the older CVS and SVN, but22

with enhanced functionality23

cetbuildtools(γ) a Fermilab-developed external product that contains build-24

tool and related tools25

UPS(γ) a Fermilab-developed system for accessing software products; it is an26

acronym for Unix Product Support.27

UPD(γ) a Fermilab-developed system for distributing software products; it28

is an acronym for Unix Product Distribution.1

jobusub tools(γ) tools for submitting jobs to the Fermigrid batch system and2

monitoring them.3

ifdh sam(γ) allows art to use SAM as an external run-time agent that can4

deliver remote files to local disk space and can copy output files to tape.5

art Documentation

Chapter 2: Introduction to the art Event Processing Framework 2–14

SAM is a Fermilab-supplied resource that provides the functions of a file6

catalog, a replica manager and some functions of a batch-oriented workflow7

manager x8

Any particular line of code in a Workbook exercise may use elements from, say,9

four or five of these packages. Knowing how to parse a line and identify which10

feature comes from which package is a critical skill. The Workbook will provide11

a tour of the above packages so that you will recognize elements when they are12

used and you will learn where to find the necessary documentation.13

The external products are made available to your code via a mechanism called14

UPS, which will be described in Section 6. UPS is, itself, just another external15

product. From the point of view of your experiment, art is an external product.16

From the point of view of the Workbook code, both art and the code for the17

toy experiment are external products.18

Finally, it is important to recognize an overloaded word, products. When a19

line of documentation simply says products, it may be refering either to data20

products or to external products. If it is not clear from the context which is21

meant, please let us know (see Section 2.4).22

2.6.9 The Event-Data Model and Persistency23

Section 2.6.4 introduced the idea of art data products. In a small experiment,24

a fully reconstructed event may contain on the order of ten data products; in a25

large experiment there may be hundreds.26

While each experiment will define its own data product classes, there are many27

ideas that are common to all data products in all experiments:28

1. How does my module access data products that are already in the event?29

2. How does my module publish a data product so that other modules can30

see it?31

3. How is a data product represented in the memory of a running program?32

4. How does an object in one data product refer to an object in another data33

product?34

5. What metadata is there to describe each data product?35

Such metadata might include: which module created it; what was the36

run-time configuration of that module; what data products were read by37

that module; what was the code version of the module that created it?1

6. How does my module access the metadata associated with a particular2

data product?3

The answers to these questions form what is called the Event-Data Model(γ)4

(EDM) that is supported by the framework.5

art Documentation

Chapter 2: Introduction to the art Event Processing Framework 2–15

A question that is closely related to the EDM is: what technologies are sup-6

ported to write data products from memory to a disk file and to read them7

from the disk file back into memory in a separate art job? A framework may8

support several such technologies. art currently supports only one disk file for-9

mat, a ROOT-based format, but the art EDM has been designed so that it will10

be straightforward to support other disk file formats as it becomes useful to do11

so.12

A few other related terms that you will encounter include:13

1. transient representation: the in-memory representation of a data product14

2. persistent representation: the on-disk representation of a data product15

3. persistency : the technology to convert data products back and forth be-16

tween their persistent and transient representations17

2.6.10 Event-Data Files18

When you read data from an experiment and write the data to a disk file, that19

disk file is usually called a data file.20

When you simulate an experiment and write a disk file that holds the infor-21

mation produced by the simulation, what should you call the file? The Par-22

ticle Data Group has recommended that this not be called a “data file” or a23

“simulated data file;” they prefer that the word “data” be strictly reserved for24

information that comes from an actual experiment. They recommend that we25

refer to these files as “files of simulated events” or “files of Monte Carlo events”26

6. Note the use of “events”, not “data.”27

This leaves us with a need for a collective noun to describe both data files and28

files of simulated events. The name in current use is event-data files(γ); yes29

this does contain the word “data” but the hyphenated word, “event-data”, is30

unambiguous and this has become the standard name.31

2.6.11 Files on Tape32

Many experiments do not have access to enough disk space to hold all of their33

event-data files, ROOT files and log files. The solution is to copy a subset of34

the disk files to tape and to read them back from tape as necessary.1

At any given time, a snapshot of an experiment’s files will show some on tape2

only, some on tape with copies on disk, and some on disk only. For any given3

file, there may be multiple copies on disk and those copies may be distributed4

6 In HEP almost all simulations codes use Monte Carlo(γ) methods; therefore simulated
events are often refered to as Monte Carlo events and the simulation process is refered to as
running the Monte Carlo.

art Documentation

Chapter 2: Introduction to the art Event Processing Framework 2–16

across many sites(γ), some at Fermilab and others at collaborating laboratories5

or universities.6

Conceptually, two pieces of software are used to keep track of which files are7

where, a File Catalog and a Replica Manager. At Fermilab, the software that fills8

both of these roles is called SAM (γ), which is an acronym for “Sequential data9

Access via Metadata.” SAM also provides some tools for Workflow management.10

You can learn more about SAM at: https://cdcvs.fnal.gov/redmine/projects11

The UPS product ifdh sam provides the glue that allows an art job to interact12

with SAM.13

2.7 The Toy Experiment14

The Workbook exercises are based around a made-up (toy) experiment. The15

code for the toy experiment is deployed as a UPS product named toyExperiment.16

The rest of this section will describe the physics content of toyExperiment; the17

discussion of the software this product uses will unfold in the Workbook, in18

parallel to the exposition of art .19

The software for the toy experiment is designed around a toy detector, which is20

shown in Figure 2.2. The toyExperiment code contains many C++ classes: some21

modules, some data products, some services and some plain old C++ classes.22

About half of the modules are producers that individually perform either one23

step of the simulation process or one step of the reconstruction/analysis pro-24

cess. The other modules are analyzers that make histograms and ntuples of the25

information produced by the producers.26

2.7.1 Toy Detector Description27

The toy detector is a central detector made up of 15 concentric shells, with their28

axes centered on the z axis; the left hand part of Figure 2.2 shows an xy view of29

these shells and the right shows the radius vs z view. The inner five shells are30

closely spaced radially and are short in z; the ten outer shells are more widely31

spaced radially and are longer in z. The detector sits in a uniform magnetic32

field of 1.5 T oriented in the +z direction. The origin of the coordinate system33

is at the center of the detector. The detector is placed in a vacuum.34

Each shell is a detector that measures (ϕ, z), where ϕ is the azimuthal angle of a35

line from the origin to the measurement point. Each measurement has perfectly36

gaussian measurement errors and the detector always has perfect separation of1

hits that are near to each other. The geometry of each shell, its efficiency and2

resolution are all configurable at run-time.3

All of the code in the toyExperiment product works in the set of units described4

in Table 2.2. Because the code in the Workbook is built on toyExperiment, it5

art Documentation

https://cdcvs.fnal.gov/redmine/projects

Chapter 2: Introduction to the art Event Processing Framework 2–17

Figure 2.2: The geometry of the toy detector; the figures are described in the
text. A uniform magnetic field of strength 1.5 T is oriented in the +z direction.

Table 2.2: Units used in the Workbook
Quantity Unit

Length mm
Energy MeV
Time ns
Plane Angle Radian
Solid Angle Steradian
Electric Charge Charge of the proton = +1
Magnetic Field Tesla

uses the same units. art itself is not unit aware and places no constraints on6

which units your experiment may use.7

The first six units listed in Table 2.2 are the base units defined by the CLHEP8

SystemOfUnits package. These are also the units used by Geant4.9

2.7.2 Workflow for Running the Toy Experiment Code10

The workflow of the toy experiment code includes five steps: three simulation11

steps, a reconstruction step and an analysis step:12

1. event generation13

2. detector simulation14

3. hit-making15

4. track reconstruction16

art Documentation

Chapter 2: Introduction to the art Event Processing Framework 2–18

5. analysis of the mass resolution17

For each event, the event generator creates one particle with the following prop-18

erties:19

• Its mass is the rest mass of the φ meson; the event generator does not20

simulate a natural width for this particle.21

• It is produced at the origin.22

• It has a momentum that is chosen randomly from a distribution that is1

uniform between 0 and 2000 MeV/c.2

• Its direction is chosen randomly on the unit sphere.3

The event generator then decays this particle to K+K−; the center-of-mass4

decay angles are chosen randomly on the unit sphere.5

In the detector simulation step, particles neither scatter nor lose energy when6

they pass through the detector cylinders; nor do they decay. Therefore, the7

charged kaons follow a perfectly helical trajectory. The simulation follows each8

charged kaon until it either exits the detector or until it completes the outward-9

going arc of the helix. When the simulated trajectory crosses one of the detector10

shells, the simulation records the true point of intersection. All intersections11

are recorded; at this stage in the simulation, there is no notion of inefficiency12

or resolution. The simulation does not follow the trajectory of the φ meson13

because it was decayed in the generator.14

Figure 2.3 shows an event display of a typical simulated event. In this event15

the φ meson was travelling almost at 90◦ to the z axis and it decayed nearly16

symmetrically; both tracks intersect all 15 detector cylinders. The left-hand17

figure shows an xy view of the event; the solid lines show the trajectory of the18

kaons, red for K+ and blue for K−; the solid dots mark the intersections of19

the trajectories with the detector shells. The right-hand figure shows the same20

event but in an rz view.21

Figure 2.4 shows an event display of another simulated event. In this event the22

K− is produced with a very shallow trajectory and it does not intersect any23

detector shells while the K+ makes five hits in the inner detector and seven in24

the outer detector. Why does the trajectory of the K+ end where it does? In25

order to keep the exercises focused on art details, not geometric corner cases,26

the simulation stops a particle when it completes its outward-going arc and27

starts to curl back towards the z axis; it does this even if the the particle is still28

inside the detector.1

The third step in the simulation chain (hit-making) is to inspect the intersections2

produced by the detector simulation and turn them into data-like hits. In this3

step, a simple model of inefficiency is applied and some intersections will not4

produce hits. Each hit represents a 2D measurement (ϕ, z); each component is5

smeared with a gaussian distribution.6

art Documentation

Chapter 2: Introduction to the art Event Processing Framework 2–19

Figure 2.3: Event display of a typical simulated event in the toy detector.

Figure 2.4: Event display of another simulated event in the toy detector; a K−

(blue) is produced with a very shallow trajectory and it does not intersect any
detector shells while the K+ (red) makes five hits in the inner detector and
seven in the outer detector

art Documentation

Chapter 2: Introduction to the art Event Processing Framework 2–20

Figure 2.5: The final plot showing 870 reconstructed events out of 1000 gener-
ated events

The three simulation steps use tools provided by art to record the truth infor-7

mation(γ) about each hit. Therefore it is possible to navigate from any hit back8

to the intersection from which it is derived, and from there back to the particle9

that made the intersection.10

The fourth step is the reconstruction step. The toyExperiment does not yet11

have properly working reconstruction code; instead it mocks up credible look-12

ing results. The output of this code is a data product that represents a fitted13

helix; it contains the fitted track parameters of the helix, their covariance matrix14

and collection of smart pointers that point to the hits that are on the recon-15

structed track. When we write proper tracking finding and track fitting code16

for the toyExperiment, the classes that describe the fitted helix will not change.17

Because the main point of the Workbook exercises is to illustrate the bookkeep-18

ing features in art , this is good enough for the task at hand. The output data19

product will contain 0, 1 or 2 fitted helices, depending on how many generated20

tracks passed the minimum hits cut.21

The fifth step in the workflow does a simulated analysis using the fitted helices22

from the reconstruction step. It forms all distinct pairs of tracks and requires23

that they be oppositely charged. It then computes the invariant mass of the24

pair, under the assumption that both fitted helices are kaons. This module25

is an analyzer module and does not make any output data product. But it26

does make some histograms, one of which is a histogram of the reconstructed27

art Documentation

Chapter 2: Introduction to the art Event Processing Framework 2–21

invariant mass of all pairs of oppositely charged tracks; this histogram is shown1

in Figure 2.5. When you run the Workbook exercises, you will make this plot2

and can compare it to Figure 2.5.3

2.8 Rules, Best Practices, Conventions and Style4

In many places, the Workbook will recommend that you write fragments of code5

in a particular way, to help you establish coding habits that will make your life6

easier as you progress in your use of C++ and art . The reason for any particular7

recommendation may be one of the following:8

• It is a hard rule enforced by the C++ language or by one of the external9

products.10

• It is a recommended best practice that might not save you time or effort11

now but will in the long run.12

• It is a convention that is widely adopted; C++ is a rich enough language13

that it will let you do some things in many different ways. Code is much14

easier to understand and debug if an experiment chooses to always write15

code fragments with similar intent using a common set of conventions.16

• It is simply a question of style.17

It is important to be able to distinguish between rules, best practices, conven-18

tions and styles; this documentation will distinguish among these options when19

discussing recommendations that it makes.20

art Documentation

Chapter 3: Unix Prerequisites 3–1

3 Unix Prerequisites21

3.1 Introduction22

You will work through the Workbook exercises on a computer that is running1

some version of the Unix operating system. This chapter describes where to2

find information about Unix and gives a list of Unix commands that you should3

understand before starting the Workbook exercises. This chapter also describes4

a few ideas that you will need immediately but which are usually not covered5

in the early chapters of standard Unix references.6

If you are already familiar with Unix and the bash(γ) shell, you can safely skip7

this chapter.8

3.2 Commands9

In the Workbook exercises, most of the commands you will enter at the Unix10

prompt will be standard Unix commands, but some will be defined by the soft-11

ware tools that are used to support the Workbook. The non-standard commands12

will be explained as they are encountered. To understand the standard Unix1

commands, any standard Linux or Unix reference will do. Section 3.10 provides2

links to Unix references.3

Most Unix commands are documented via the man page system (short for “man-4

ual”). To get help on a particular command, type the following at the command5

prompt, replacing <command-name> with the actual name of the command: 1
6

7

$ man <command-name>8

In Unix, everything is case sensitive; so the command man must be typed in9

lower case. You can also try the following; it works on some commands and not10

1Remember that a convention used in this document, is that a command you should type
at the command prompt is indicated by a leading dollar sign; but you should not type the
leading dollar sign. This was described in Section 1.

art Documentation

Chapter 3: Unix Prerequisites 3–2

others:11

$ <command-name> --help12

or13

$ <command-name> -?14

Before starting the Workbook, make sure that you understand the basic usage15

of the following Unix commands:16

cat, cd, cp, echo, export, gzip, head,17

less, ln -s, ls, mkdir, more, mv,18

printenv, pwd, rm, rmdir, tail, tar19

You also need to be familiar with the following Unix concepts:20

• filename vs pathname21

• absolute path vs relative path22

• directories and subdirectories (equivalent to folders in the Windows and23

Mac worlds)24

• current working directory1

• home directory (aka login directory)2

• ../ notation for viewing the directory above your current working direc-3

tory4

• environment variables (discussed briefly in Section 3.5)5

• paths(γ) (in multiple senses; see Section 3.6)6

• file protections (read-write-execute, owner-group-other)7

• symbolic links8

• stdin, stdout and stderr9

• redirecting stdin, stdout and stderr10

• putting a command in the background via the & character11

• pipes12

3.3 Shells13

When you type a command at the prompt, a Unix agent called a Unix shell,14

or simply a shell, reads your command and figures out what to do. Some com-15

mands are executed internally by the shell but other commands are dispatched16

to an appropriate program or script. A shell lives between you and the under-17

lying operating system; most versions of Unix support several shells. The art18

art Documentation

Chapter 3: Unix Prerequisites 3–3

Workbook code expects to be run in the bash shell. You can see which shell19

you’re running by entering:20

$ echo $SHELL21

For those of you with accounts on a Fermilab machine, your login shell was22

initially set to the bash shell2.23

If you are working on a non-Fermilab machine and bash is not your default shell,24

consult a local expert to learn how to change your login shell to bash.25

3.4 Scripts: Part 126

In order to automate repeated operations, you may write multiple Unix com-27

mands into a file and tell bash to run all of the commands in the file as if you28

had typed them sequentially. Such a file is an example of a shell script or a29

bash script. The bash scripting language is a powerful language that supports30

looping, conditional execution, tests to learn about properties of files and many31

other features.32

Throughout the Workbook exercises you will run many scripts. You should1

understand the big picture of what they do, but you don’t need to understand2

the details of how they work.3

If you would like to learn more about bash, some references are listed in Sec-4

tion 3.10.5

3.5 Unix Environments6

3.5.1 Layering Environments7

Very generally, a Unix environment is a set of information that is made available8

to programs so that they can find everything they need in order to run properly.9

The Unix operating system itself defines a generic environment, but often this10

is insufficient for everyday use. However, an environment sufficient to run a11

particular set of applications doesn’t just pop out of the ether, it must be12

established or set up, either manually or via a script. Typically, on institutional13

machines at least, system administrators provide a set of login scripts that14

run automatically and enhance the generic Unix environment. This gives users15

access to a variety of system resources, including, for example:16

• disk space to which you have read access17

2 If you have had a Fermilab account for many years, your default shell might be something
else. If your default shell is not bash, open a Service Desk ticket to request that your default
shell be changed to bash.

art Documentation

Chapter 3: Unix Prerequisites 3–4

• disk space to which you have write access18

• commands, scripts and programs that you are authorized to run19

• proxies and tickets that authorize you to use resources available over the20

network21

• the actual network resources that you are authorized to use, e.g., tape22

drives and DVD drives23

This constitutes a basic working environment or computing environment. En-24

vironment information is largely conveyed by means of environment variables25

that point to various program executable locations, data files, and so on. A26

simple example of an environment variable is HOME, the variable whose value is27

the absolute path to your home directory.28

Particular programs (e.g., art) usually require extra information (i.e., another29

environment layer) on top of a standard working environment, e.g., paths to30

the program’s executable(s) and to its dependent programs, paths indicating31

where it can find input files and where to direct its output, and so on. In addi-1

tion to environment variables, the art-enabled computing environment includes2

some aliases and bash functions that have been defined; these are discussed in3

Section 3.8.4

In turn, the Workbook code, which must work for all experiments and at Fer-5

milab as well as at collaborating institutions, requires yet another environment6

layer – a site-specific layer.7

Given the different experiments using art and the variety of laboratories and8

universities at which the users work, a site(γ) in art is a unique combination9

of experiment and institution. It is used to refer to a set of computing resources10

configured for use by a particular experiment at a particular institution. Setting11

up your site-specific environment will be discussed in Section 3.7.12

When you finish the Workbook and start to run real code, you will set up your13

experiment-specific environment on top of the more generic art-enabled environ-14

ment, in place of the Workbook’s. To switch between these two environments,15

you will log out and log back in, then run the script appropriate for the environ-16

ment you want. Because of potential naming “collisions,” it is not guaranteed17

that these two environments can be overlain and always work properly.18

This concept of environment layering is illustrated in Figure 3.1.19

3.5.2 Examining and Using Environment Variables20

One way to see the value of an environment variable is to use the printenv21

command:22

$ printenv HOME23

art Documentation

Chapter 3: Unix Prerequisites 3–5

Figure 3.1: Layers in the art Workbook (left) and experiment-specific (right)
computing environments

At any point in an interactive command or in a shell script, you can tell the24

shell that you want the value of the environment variable by prefixing its name25

with the $ character:26

$ echo $HOME27

Here, echo is a standard Unix command that copies its arguments to its output,28

in this case the screen.29

By convention, environment variables are virtually always written in all capital30

letters3.31

There may be times when the Workbook instructions tell you to set an envi-32

ronment variable to some value. To do so, type the following at the command33

prompt:34

$ export <ENVNAME>=<value>35

If you read bash scripts written by others, you may see the following variant,36

which accomplishes the same thing:37

$ <ENVNAME>=<value>38

$ export <ENVNAME>1

3Another type of variable, shell variables, are local to the currently-invoked shell and go
away when the shell exits. By convention, these are written in lower or mixed case. These
conventions provide a clue to the programmer as to whether changing a variable’s value might
have consequences outside the current shell.

art Documentation

Chapter 3: Unix Prerequisites 3–6

3.6 Paths and $PATH2

Path (and PATH) is an overloaded word in computing. Here are the ways in3

which it is used:4

path can refer to the location of a file or a directory; a path may be absolute5

or relative, e.g.6

/absolute/path/to/mydir/myfile or7

relative/path/on/same/branch/to/mydir/myfile or8

../relative/path/on/different/branch/to/herdir/herfile9

PATH refers to the standard Unix environment variable set by your login scripts10

and updated by other scripts that extend your environment; it is a colon-11

separated list of directory names, e.g.,12

/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin.13

It contains the list of directories that the shell searches to find program-14

s/files required by Unix shell commands (i.e., PATH is used by the shell15

to “resolve” commands).16

path generically, any environment variable whose value is a colon-separated list1

of directory names e.g.,2

/abs/path/a:/abs/path/b:rel/path/c3

In addition, art defines a fourth idea, also called a path, that is unrelated to any4

of the above; it will be described as you encounter it in the Workbook.5

All of these path concepts are important to users of art . In addition to PATH6

itself, there are three PATH-like environment variables (colon-separated list of7

directory names) that are particularly important:8

LD LIBRARY PATH used by art to resolve shareable libraries9

PRODUCTS used by UPS to resolve external products10

FHICL FILE PATH use by FHiCL to resolve #include directives.11

When you source the scripts that setup your environment for art , these will be12

defined and additional colon-separated elements will be added to your PATH.13

You can look at the value of PATH (or the others):14

$ printenv PATH15

You can make the output easier to read by replacing all of the colons with16

newline characters:17

$ printenv PATH | tr : \\n18

In the above line, the vertical bar is referred to as a pipe and tr is a standard19

Unix command. A pipe takes the output of the command to its left and makes20

that the input of the command to its right. The tr command replaces patterns21

of characters with other patterns of characters; in this case it replaces every22

art Documentation

Chapter 3: Unix Prerequisites 3–7

occurrence of the colon character with the newline character. To learn why a23

double back slash is needed, read bash documentation to learn about escaping24

special characters.25

3.7 Scripts: Part 226

There are two ways to run a bash script (actually three, but two of them are27

the same). Suppose that you are given a bash script named file.sh. You can28

do any of:29

$ file.sh30

$ source file.sh31

$. file.sh32

The first version, file.sh, starts a new bash shell, called a subshell, and it33

executes the commands from file.sh in that subshell; upon completion of34

the script, control returns to the parent shell. At the startup of a subshell, the35

environment of that subshell is initialized to be a copy of the environment of36

its parent shell. If file.sh modifies its environment, then it will modify only37

the environment of the subshell, leaving the environment of the parent shell1

unchanged. This version is called executing the script.2

The second and third versions are equivalent. They do not start a subshell;3

they execute the commands from file.sh in your current shell. If file.sh4

modifies any environment variables, then those modifications remain in effect5

when the script completes and control returns to the command prompt. This6

is called sourcing the script.7

Some shell scripts are designed so that they must be sourced and others are8

designed so that they must be executed. Many shell scripts will work either9

way.10

If the purpose of a shell script is to modify your working environment then it11

must be sourced, not executed. As you work through the Workbook exercises,12

pay careful attention to which scripts it tells you to source and which to execute.13

In particular, the scripts to setup your environment (the first scripts you will14

run) are bash scripts that must be sourced because their purpose is to configure15

your environment so that it is ready to run the Workbook exercises.16

Some people adopt the convention that all bash scripts end in .sh; others adopt17

the convention that only scripts designed to be sourced end in .sh while scripts18

that must be executed have no file-type ending (no “.something” at the end).19

Neither convention is uniformly applied either in the Workbook or in HEP in20

general.21

If you would like to learn more about bash, some references are listed in Sec-22

tion 3.10.23

art Documentation

Chapter 3: Unix Prerequisites 3–8

3.8 bash Functions and Aliases24

The bash shell also has the notion of a bash function. Typically bash func-25

tions are defined by sourcing a bash script; once defined, they become part of26

your environment and they can be invoked as if they were regular commands.27

The setup <product> “command” that you will sometimes need to issue,28

described in Chapter 6, is an example. A bash function is similar to a bash29

script in that it is just a collection of bash commands that are accessible via30

a name; the difference is that bash holds the definition of a function as part31

of the environment while it must open a file every time that a bash script is32

invoked.33

You can see the names of all defined functions with the bash command34

$ declare -F35

The bash shell also supports the idea of aliases; this allows you to define a new36

command in terms of other commands. You can see the definition of all aliases37

with the bash command38

$ alias1

You can read more about bash functions and aliases in any standard bash ref-2

erence.3

When you type a command at the command prompt, bash will resolve the4

command using the following order:5

1. Is the command a known alias?6

2. Is the command a bash keyword, such as if or declare?7

3. Is the command a shell function?8

4. Is the command a shell built-in command?9

5. Is the command found in $PATH?10

To learn how bash will resolve a particular command, give the bash com-11

mand:12

$ type <command-name>13

3.9 Login Scripts14

When you first login to a computer running the Unix operating system, the15

system will look for specially named files in your home directory that are scripts16

to set up your working environment; if it finds these files it will source them17

before you first get a shell prompt. As mentioned in Section 3.5, these scripts18

art Documentation

Chapter 3: Unix Prerequisites 3–9

modify your PATH and define bash functions, aliases and environment variables.19

All of these become part of your environment.20

When your account on a Fermilab computer was first created, you were given21

standard versions of the files .profile and .bashrc; these files are used by22

bash4. You can read about login scripts in any standard bash reference. You23

may add to these files but you should not remove anything that is present.24

If you are working on a non-Fermilab computer, inspect the login scripts to25

understand what they do.26

It can be useful to inspect the login scripts of your colleagues to find useful27

customizations.28

If you read generic Unix documentation, you will see that there are other login29

scripts with names like, .login, .cshrc and .tcshrc. These are used by30

the csh family of shells and are not relevant for the Workbook exercises, which31

require the bash shell.32

3.10 Suggested Unix and bash References33

The following cheat sheet provides some of the basics:1

• http://mu2e.fnal.gov/atwork/computing/UnixHints.shtml2

A more comprehensive summary is available from:3

• http://www.tldp.org/LDP/GNU-Linux-Tools-Summary/html/GNU-Linux-4

Tools-Summary.html5

Information about writing bash scripts and using bash interactive features can6

be found in:7

• BASH Programming - Introduction HOW-TO8

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html9

• Bash Guide for Beginners10

http://www.tldp.org/LDP/Bash-Beginners-Guide/html/Bash-Beginners-Guide.html11

• Advanced Bash Scripting Guide12

http://www.tldp.org/LDP/abs/html/abs-guide.html13

The first of these is a compact introduction and the second is a more compre-14

hensive introduction.15

The above guides were all found at the Linux Documentation Project: Work-16

book:17

• http://www.tldp.org/guides.html18

4These files are used by the sh family of shells, which includesbash.

art Documentation

http://mu2e.fnal.gov/atwork/computing/UnixHints.shtml
http://www.tldp.org/LDP/GNU-Linux-Tools-Summary/html/GNU-Linux-Tools-Summary.html
http://www.tldp.org/LDP/GNU-Linux-Tools-Summary/html/GNU-Linux-Tools-Summary.html
http://www.tldp.org/LDP/GNU-Linux-Tools-Summary/html/GNU-Linux-Tools-Summary.html
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://www.tldp.org/LDP/Bash-Beginners-Guide/html/Bash-Beginners-Guide.html
http://www.tldp.org/LDP/abs/html/abs-guide.html
http://www.tldp.org/guides.html

Chapter 4: Site-Specific Setup Procedure 4–1

4 Site-Specific Setup Procedure19

Section 3.5 discussed the notion of a working environment on a computer.20

This chapter answers the question: How do I make sure that my environment21

variables are set correctly to run the Workbook exercises or my experiment’s22

code using art?23

Very simply, on every computer that hosts the Workbook, a procedure must be24

established that every user is expected to follow once per login session. In most25

cases (NOνA being a notable exception), the procedure involves only sourcing a26

shell script (recall the discussion in Section 3.7). In this documentation, we refer27

to this procedure as the “site-specific setup procedure.” It is the responsibility28

of the people who maintain the Workbook software for each site(γ) to ensure29

that this procedure does the right thing on all the site’s machines.30

As a user of the Workbook, you will need to know what the procedure is (gen-31

erally it is a single command to source a script) and you must remember to32

follow it each time that you log in.33

For all of the Intensity Frontier experiments at Fermilab, the site-specific setup1

procedure defines all of the environment variables that are necessary to create2

the working environment for either the Workbook exercises or for the experi-3

ment’s own code.4

Table 4.1 lists the site-specific setup command for each experiment. You will5

run the command when you get to Section 8.4.6

The table gives two options for Mu2e; both are equivalent. The first option,7

8

$ setup mu2e9

simply redirects to10

$ source /grid/fermiapp/products/mu2e/setupmu2e-art.sh11

We recommend that Mu2e members adopt the habit of using setup mu2e.12

The other Intensity Frontier experiments will be making a similar change in the13

near future.14

art Documentation

Chapter 4: Site-Specific Setup Procedure 4–2

Table 4.1: Site-specific setup procedure for IF (γ) Experiments at Fermilab

Experiment Site-Specific Setup Command

ArgoNeut
Darkside source /ds50/app/ds50/ds50.sh
LBNE (in development) setup lbne
MicroBoone . /grid/fermiapp/products/uboone/etc/setups.sh
Muon g-2 source /gm2/app/software/prod/g-2/setup
Mu2e setup mu2e (preferred)

source /grid/fermiapp/products/mu2e/setupmu2e-art.sh (deprecated)
NOνA source /grid/fermiapp/nova/novaart/novasvn/srt/srt.sh

export EXTERNALS=/nusoft/app/externals
source $SRT DIST/setup/setup novasoft.sh -b maxopt

art Documentation

Chapter 5: Get your C++ up to Speed 5–1

5 Get your C++ up to Speed15

5.1 Introduction16

’17

There are two goals for this chapter. The first is to illustrate the features of18

C++ that will be important for users of the Workbook, especially those features19

that will be used in the first few Workbook exercises. It does not attempt to20

cover C++ comprehensively and it delegates as much as possible to the standard21

documentation.22

The second goal is to explain the process of turning source code files into an23

executable program. The two steps in this process are compiling and linking. In24

informal writing, the word build is sometimes used to mean just compiling or25

just linking, but usually it refers to the two together.26

A typical program consists of many source code files, each of which contains a27

human-readable description of one component of the program. In the Workbook,28

you will see source code files written in the C++ computer language; these29

files have names that end in .cc. In C++, there is a second sort of source code30

file, called a header file that ends in .h; in most, but not all, cases for every1

file ending in .cc there is another file with the same name but ending in .h.2

Header files can be thought of as the “parts list” for the corresponding .cc file;3

you will see how these are used in Section 5.4.4

In the compilation step each .cc file is translated into machine code, also called5

binary code or object code, which is a set of instructions, in the computer’s6

native language, to do the tasks described by the source code. The output of7

the compilation step is called an object file; in the examples you will see in the8

Workbook, object files always end in .o. But an object file, by itself, is not9

an executable program. It is not executable because each .o file was created in10

isolation and does not know about the other .o files.11

It is often convenient to collect related groups of .o files and put them into12

libraries. There are two kinds of library files, static libraries, whose names13

end in .a and shared libraries whose names end in .so. Putting many .o files14

art Documentation

Chapter 5: Get your C++ up to Speed 5–2

into a single library allows you to use them as a single coherent entity. We will15

defer further discussion of libraries until more background information has been16

provided.17

The job of the linking step is to read the information found in the various18

libraries and .o files and form them into an executable program. When you run19

the linker, you tell it the name of the file into which it will write the executable20

program. It is a common, but not universal, practice that the filename of an21

executable program has no extension (i.e. no .something at the end).22

After the linker has finished, you can run your executable program typing the23

filename of the program at the bash command prompt.24

A typical program links both to libraries that were built from the program’s25

source code and to libraries from other sources. Some of these other libraries26

might have been developed by the same programmer as general purpose tools27

to be used by his or her future programs; other libraries are provided by third28

parties, such as art or your experiment. Many C++ language features are29

made available to your program by telling the linker to use libraries provided30

by the C++ compiler vendor. Other libraries are provided by the operating1

system.2

Now that you know about libraries,, we can give a second reason why an object3

file, by itself, is not an executable program: until it is linked, it does not have4

access to the functions provided by any of the external libraries. Even the5

simplest program will need to be linked against some of the libraries supplied6

by the compiler vendor and by the operating system.7

The names of all of the libraries and object files that you give to the linker is8

called the link list.9

This chapter is designed around a handful of exercises, each of which you will10

first build and run, then “pick apart” to understand how the results were ob-11

tained.12

5.2 Establishing the Environment13

5.2.1 Initial Setup14

To start these exercises for the first time, do the following:15

1. Log into the node that you will use for Workbook exercises.16

2. Follow the site-specific setup procedure from Table 4.1.17

3. Create an empty working directory and cd to it.18

4. Run these commands to copy a gzipped tar file from the web, unpack it,19

and get a directory listing:20

art Documentation

Chapter 5: Get your C++ up to Speed 5–3

$ wget http://artdoc.fnal.gov/C++UpToSpeed.tar.gz21

$ tar xzf C++UpToSpeed.tar.gz22

$ rm C++UpToSpeed.tar.gz23

$ ls24

BasicSyntax Build Classes Libraries setup.sh25

5. Source the setup.sh script to select the correct compiler version and26

define a few environment variables that will be used later in these exercises:27

$ source setup.sh28

After these steps, you are ready to begin the exercise in Section 5.3.29

5.2.2 Subsequent Logins30

If you log out and log back in again, reestablish your environment by following31

these steps:32

1. Log into the node that you will normally use.33

2. Follow the site-specific setup procedure.34

3. cd to the working directory you created in Section 5.2.1.35

4. $ source setup.sh1

5. cd to the directory that contains the exercise you want to work on.2

5.3 C++ Exercise 1: The Basics3

5.3.1 Concepts to Understand4

This section provides a program that illustrates the parts of C++ that are5

assumed knowledge for the Workbook material. If you do not understand some6

of the code in this example program, consult any standard C++ reference;7

several are listed in Section 5.7.8

Once you have understood this example program, you should understand the9

following concepts:10

1. how comments are indicated11

2. what is a main program12

3. how to write a C++ main program13

4. how to compile, link and run the main program14

5. how to distinguish between source, object and executable files15

6. how to print to standard output, std::cout16

art Documentation

Chapter 5: Get your C++ up to Speed 5–4

7. how to declare and define variables(γ) of the some of the frequently used17

built-in types: int, float, double, bool18

8. the {} initializer syntax19

9. assignment to variables20

10. C++ arrays21

11. several different forms of looping22

12. comparisons: ==, !=, <, >, >=, <=23

13. if-then-else, if-then-else if-else24

14. pointers25

15. references26

16. std::string (a type from the C++ Standard Library (std(γ))27

17. the class template from the standard library, std::vector<T>28

Regarding the last item, std::vector<T>, you need to know how to use it,29

but you do not need to understand how it works or how to write your own30

templates.31

The above list explicitly does not include classes, objects and inheritance, which1

will be discussed in Sections 5.6 and 30.9.2

5.3.2 How to Compile, Link and Run3

In this section you will learn how to compile, link and run the small C++4

program that illustrates the features of C++ that are considered prerequisites.5

The main discussion of the details of compiling and linking will be deferred until6

Section 5.4.7

We don’t offer a lot of details up front; more will follow in Sections 5.3.58

and 5.3.4. The idea here is to get used to the steps and see what results you9

get.10

To compile, link and run the sample C++ program, called t1:11

1. If not yet done, log in and establish the working environment (Section 5.2).12

2. List the starting set of files:13

$ cd BasicSyntax/v1/14

$ ls15

build t1.cc t1 example.log16

17

The file t1.cc contains the source code of the main program, which is a18

function called main() { ...}. The file build is a script that will19

art Documentation

Chapter 5: Get your C++ up to Speed 5–5

compile and link the code. The file t1 example.log is an example of20

the output expected when you run t1.21

3. Compile and link the code; then look at a directory listing:22

$ build23

t1.cc: In function int main():24

t1.cc:43:26: warning: k may be used uninitialized in25

this function [-Wuninitialized]26

$ ls27

build t1 t1.cc t1 example.log28

29

The script named build compiles and links the code, and produces the30

executable file t1. The warning message, issued by the compiler, also31

comes during this step.32

4. Run the executable file sending output to a log file:33

$./t1 > t1.log34

5.3.3 Suggested Homework1

1. Compare your output with the standard example:2

$ diff t1.log t1 example.log3

4

There will almost certainly be a handful of differences.5

2. Look at the file t1.cc and understand what it does, in particular the6

relationship between the lines in the program and the lines in the output.7

If you don’t understand something, consult a standard C++ reference; see Sec-8

tion 5.7. A few of your questions might also be answered in Section 5.3.4.9

5.3.4 Discussion10

Why do we expect several of the lines of the output to be different from those11

in t1 example.log? There are two classes of answers: (1) an uninitialized12

variable and (2) variation in variable addresses from run to run.13

In t1.cc, the line14

int k;15

declares that k is a variable whose type is int but it does not initialize the16

variable. Therefore the value of the variable k is whatever value happened to17

be sitting in the memory location that the program assigned to k. Each time18

that the program runs, the operating system will put the program into whatever19

region of memory makes sense to the operating system; therefore the address of20

art Documentation

Chapter 5: Get your C++ up to Speed 5–6

any variable, and thus the value returned, may change unpredictably from run21

to run.22

This line is also the source of the warning message produced by the build script.23

This line was included to make it clear what we mean by initialized variables and24

uninitialized variables. Uninitialized variables are frequent sources of errors in25

code and therefore you should always initialize your variables. In order to help26

you establish this good coding habit, the remaining exercises in this series and27

in the Workbook include the compiler option -Werror. This tells the compiler28

to promote warning messages to error level and to stop compilation without29

producing an output file.30

The second line that may differ from one run to the next is:31

float *pa=&a;32

This line declares a variable pa, which is of type pointer(γ) to float, and it33

initializes this variable to be the memory address of the variable a (a must34

be of type float). Since the address may change from run to run, so may the35

printout that starts pa =.36

For similar reasons, the lines in the printout that start &a = and &ra = may1

also change from run to run.2

5.3.5 How was this Exercise Built?3

Just to see how the exercise was built, look at the script BasicSyntax/v1/build4

that you ran to compile and link t1.cc; the following command was issued:5

c++ -Wall -Wextra -pedantic -std=c++11 -o t1 t1.cc6

This turned the source file t1.cc into an executable program, named t1 (the7

argument to the -o (for “output”) option). We will discuss compiling and8

linking in Section 5.4.9

5.4 C++ Exercise 2: About Compiling and Link-10

ing11

5.4.1 What You Will Learn12

In the previous exercise, the entire program was found in a single file and the13

build script performed compiling and linking in a single step. For all but the14

smallest programs, this is not practical. It would mean, for example, that15

you would need to recompile and relink everything when you made even the16

smallest change anywhere in the code; generally this would take much too long.17

To address this, some computer languages, including C++, allow you to break18

art Documentation

Chapter 5: Get your C++ up to Speed 5–7

up a large program into many smaller files and rebuild only a small subset of19

files when you make changes in one.20

There are two exercises in this section. In the first one the source code consists21

of three files. This example has enough richness to discuss the details of what22

happens during compiling and linking, without being overwhelming. The second23

exercise introduces the ideas of libraries and external packages.24

5.4.2 The Source Code for this Exercise25

The source code for this exercise is found in Build/v1, relative to your working26

directory. The relevant files are27

function.cc function.h t1.cc28

The file t1.cc is the file that contains the source code for the function main()29

{ ...}) for this exercise. Every C++ program must have one and only one30

function named main, which is where the program actually starts execution.31

Note that the term main program sometimes refers to this function, but other32

times refers to the .cc file that contains it. In either case, main program refers33

to this function, either directly or indirectly. For more information, consult any34

standard C++ reference. The file function.h is a header file that declares a1

function named function. The file function.cc is another source code file;2

it provides the definition of that function.3

Look at t1.cc: it both declares and defines the program’s function main() {4

... } that takes no arguments. A function with this signature(γ) has special5

meaning to the complier and the linker: they recognize it as a C++ main6

program. There are other signatures that the compiler and linker will recognize7

as a C++ main program; consult the standard C++ documentation.8

To be recognized as a main program, there is one more requirement: main()9

{ ... } must be declared in the global namespace.10

The body of the main program (between the braces), declares and defines a11

variable a and initializes it to the value of 3; it prints out the value of a. Then12

it calls a function that takes a as an argument and prints out the value returned13

by that function.14

You, as the programmer using that function, need to know what the function15

does but the C++ compiler doesn’t. It only needs to know the name, argument16

list and return type of the function — information that is provided in the header17

file, function.h. This file contains the line18

float function(float);19

This line is called the declaration(γ) of the function. It says (1) that the identifier20

function is the name of a function that (2) takes an argument of type float21

(the “float” inside the parentheses) and (3) returns a value of type float22

art Documentation

Chapter 5: Get your C++ up to Speed 5–8

(the “float” at the start of the line). The file t1.cc includes this header file,23

thereby giving the compiler these three pieces of information it needs to know24

about function.25

The other three lines in function.h are code guards, described in Section 30.8.26

In brief, they deal with the following scenario: suppose that we have two header27

files, A.h and B.h, and that A.h includes B.h; there are many scenarios in28

which it makes good sense for a third file, either .h or .cc, to include both29

A.h and B.h. The code guards ensure that, when all of the includes have been30

expanded, the compiler sees exactly one copy of B.h.31

Finally, the file function.cc contains the source code for the function named32

function:33

float function (float i){34

return 2.*i;35

}36

It names its argument i, multiplies this argument by two and returns that37

value. This code fragment is called the definition of the function or the imple-38

mentation(γ) of the function. (The C++ standard uses the word definition but1

implementation is in common use.)2

We now have a rich enough example to discuss another case in which the same3

word is frequently used to mean two different things. Sometimes people use the4

phrase “the source code of the function named function” to refer collectively5

to both function.h and function.cc; sometimes they use it to refer ex-6

clusively to function.cc. Unfortunately the only way to distinguish the two7

uses is from context.8

The word header file always refers unambiguously to the .h file. The term9

implementation file is used to refer unambiguously to the .cc file. This name10

follows from the its contents: it describes how to implement the items declared11

in the header file.12

Based on the above description, when this exercise is run, we expect it to print13

out:14

a = 315

function(a) 616

5.4.3 Compile, Link and Run the Exercise17

To perform this exercise, first log in and cd to your working directory if you18

haven’t already, then19

1. cd to the directory for this exercise and get a directory listing:20

$ cd Build/v121

$ ls22

art Documentation

Chapter 5: Get your C++ up to Speed 5–9

build build2 function.cc function.h t1.cc23

24

The two files, build and build2 are scripts that show two different25

ways to build the code.26

2. Compile and link this exercise, then get an updated directory listing:27

$ build28

$ ls29

build build2 function.cc function.h function.o t1 t1.cc30

t1.o31

32

Notice the new files function.o, t1 and t1.o.33

3. Run the exercise:34

$./t135

a = 336

function(a) 637

38

This matches the expected printout.1

Look at the file build that you just ran. It has three steps; the first two2

commands have the -c command line option while the last one does not:3

1. It compiles the main program, t1.cc, into the object file (with the default4

name) t1.o (which will now be the thing that the term main program5

refers to):6

c++ -Wall -Wextra -pedantic -Werror -std=c++11 -c t1.cc7

2. It (separately) compiles function.cc into the object file function.o:8

c++ -Wall -Wextra -pedantic -Werror -std=c++11 -c function.cc9

3. It links t1.o and function.o to form the executable program t1 (the10

name of the main program is the argument of the -o option):11

c++ -std=c++11 -o t1 t1.o function.o12

You should have noticed that the same command, c++, is used both for compil-13

ing and linking. The full story is that when you run the command c++, you are14

actually running a program that parses its command line to determine which,15

if any, files need to be compiled and which, if any, files need to be linked. It16

also determines which of its command line arguments should be forwarded to17

the compiler and which to the linker. It then runs the compiler and linker as18

many times as required.19

If the -c option is present, it tells c++ to compile only, and not to link. If -c is20

specified, the .cc file(s) to compile must also be specified. Each of the files will21

be compiled to create its corresponding object file and then processing stops.22

In our example, the first two commands each compile a single source file. Note23

that if any .o files are given on the command line, c++ will issue a warning and24

ignore them.25

art Documentation

Chapter 5: Get your C++ up to Speed 5–10

The third command (with no -c option) is the linking step. Even if the -c26

option is missing, c++ will first look for source files on the command line; if27

it finds any, it will compile them and put the output into temporary object28

files. In our example, there are none, so it goes straight to linking. The two29

just-created object files are specified (at the end, here, but the order is not30

important); the -o t1 portion of the command tells the linker to write its31

output (the executable) to the file t1.32

As it is compiling the main program, t1.cc, the compiler recognizes every33

function that is defined within the file and every function that is called by the34

code in the file. It recognizes that t1.cc defines a function main() and that35

main() calls a function named function, whose definition is not found inside36

t1.cc. At the point that t1.cc calls function, the compiler will write37

to function all of the machine code needed to prepare for the call; it will38

also write all of the machine code needed to use the result of the function. In39

between these two pieces, the compiler will write machine code that says “call40

the function whose memory address is” but it must leave an empty placeholder41

for the address. The placeholder is empty because the compiler does not know1

the memory address of that function.2

The compiler also makes a table that lists all functions defined by the file and3

all functions that are called by code within the file. The name of each entry4

in the table is called a linker symbol and the table is called a symbol table.5

When the compiler was compiling t1.cc and it found the definition of the6

main program, it created a linker symbol for the main program and added a7

notation to say the this file contains the definition of that symbol. When the8

compiler was compiling t1.cc and it encountered the call to function, it9

created a linker symbol for this function; it marked this symbol as an undefined10

reference (because it could not find the definition of function within t1.cc).11

The symbol table also lists all of the places in the machine code of t1.o that12

are placeholders that must be updated once the memory address of function13

is known. In this example there is only one such place.14

When the compiler writes an object file, it writes out both the compiled code15

and the table of linker symbols.16

In t1.cc, the compiled code for the line that begins std::cout will do its17

work by calling a few functions that are found in the compiler-supplied libraries.18

The linker symbols for these functions will also be listed as undefined references19

in the symbol table of t1.o; the symbol table also lists the places within the20

machine code of t1.o that need to be updated once the addresses of these21

symbols are known.22

The symbol table in the file function.o is simple; it says that this file defines23

a function named function that takes a single argument of type float and that24

returns a float.25

The job of the linker (also invoked by the command c++) is to play match-26

maker. First it inspects the symbol tables inside all of the object files listed on27

art Documentation

Chapter 5: Get your C++ up to Speed 5–11

the command line and looks for a linker symbol that defines the location of the28

main program. If it cannot find one, or if it finds more than one, it will issue29

an error message and stop. In this example30

1. The linker will find the definition of a main program in t1.o.31

2. It will start to build the executable (output) file by copying the machine32

code from t1.o to the output file.33

3. Then it will try to resolve the unresolved references listed in the symbol34

table of t1.o; it does this by looking at the symbol tables of the other35

object files on the command line. It also knows to look at the symbol tables36

from a standard set of compiler-supplied and system-supplied libraries.37

4. It will discover that function.o resolves one of the external references38

from t1.o. So it will copy the machine code from function.o to the39

executable file.40

5. It will discover that the the other unresolved references in t1.o are found41

in the compiler-supplied libraries and will copy code from these libraries42

into the executable.43

6. Once all of the machine code has been copied into the executable, the1

compiler knows the memory address of every function. The compiler can2

then go into the machine code, find all of the placeholders and update3

them with the correct memory addresses.4

Sometimes resolving one unresolved reference will generate new ones. The linker5

iterates until (a) all references are resolved and no new unresolved references6

appear (success) or (b) the same unresolved references continue to appear (er-7

ror). In the former case, the linker writes the output to the file specified by the8

-o option; if no -o option is specified the linker will write its output to a file9

named a.out. In the latter case, the linker issues an error message and does10

not write the output file.11

After the link completes, the files t1.o and function.o are no longer needed12

because everything that was useful from them was copied into the executable13

t1. You may delete the .o files, and the executable will still run.14

5.4.4 Alternate Script build215

The script build2 shows an equivalent way of building t1 that is commonly16

used for small programs; it does it all on one line. To exercise this script:17

1. Stay in the same directory as before, Build/v1.18

2. Clean up from the previous build and look at the directory contents:19

$ rm function.o t1 t1.o20

$ ls21

build build2 function.cc function.h t1.cc22

art Documentation

Chapter 5: Get your C++ up to Speed 5–12

3. Run the build2 script, and again look at directory contents:23

$ build224

$ ls25

build build2 function.cc function.h t1 t1.cc26

27

Note that t1 was created but there are no .o files.28

4. Execute the program that you just built29

$./t130

a = 331

function(a) 632

33

Look at the script build2; it contains only one line (shown as two here):34

c++ -Wall -Wextra -pedantic -Werror -std=c++11 -o t1 \35

t1.cc function.cc36

This script automatically does the same operations as build but it knows that37

the .o files are temporaries. Perhaps the command c++ kept the contents of1

the two .o files in memory and never actually wrote them out as disk files. Or,2

perhaps, the command c++ did explcitly create disk files and deleted them when3

it was finished. In either case you don’t see them when you use build2.4

5.4.5 Suggested Homework5

It takes a bit of experience to decipher the error messages issued by a C++6

compiler. The three exercises in this section are intended to introduce you to7

them so that you (a) get used to looking at them and (b) understand these8

particular errors if/when you encounter them later.9

Each of the following three exercises is independent of the others. Therefore,10

when you finish with each exercise, you will need to undo the changes you made11

in the source file(s) before beginning the next exercise.12

1. In Build/v1/t1.cc, comment out the include directive for function.h;13

rebuild and observe the error message.14

2. In Build/v1/function.cc, change the return type to double; rebuild15

and observe the error message.16

3. In Build/v1/t1.cc, change float a=3. to double a=3.; rebuild17

and run. This will work without error and will produce the same output18

as before.19

art Documentation

Chapter 5: Get your C++ up to Speed 5–13

The first homework exercise will issue the diagnostic:20

t1.cc: In function int main():21

t1.cc:10:44: error: function was not declared in this scope22

When you see a message like this one, you can guess that either you have23

not included a required header file or you have misspelled the name of the24

function.25

The second homework exercise will issue the diagnostic:26

function.cc: In function double function(float):27

function.cc:3:27: error: new declaration double function(float)28

In file included from function.cc:1:0:29

function.h:4:7: error: ambiguates old declaration float function(float)30

This error message says that the compiler has found two functions that have the31

same signature but different return types. The compiler does not know which32

of the two functions you want it to use.33

The bottom line here is that you must ensure that the definition of a function is34

consistent with its declaration; and you must ensure that the use of a function35

is consistent with its declaration.36

The third homework exercise illustrates the C++ idea of automatic type conver-37

sion; in this case the compiler will make a temporary variable of type float38

and set its value to that of a:1

float tmp = a;2

The compiler will then use this temporary variable as the argument of the func-3

tion. Consult the standard C++ documentation to understand when automatic4

type conversions may occur; see Section 5.7.5

5.5 C++ Exercise 3: Libraries6

Multiple compiled object code files can be grouped into a single file known as a7

library, obviating the need to specify each and every object file when linking; you8

can reference the libraries instead. This simplifies the multiple use and sharing9

of software components. Components that are large can be created for dynamic10

use, thus allowing the library to remain separate from the executable, reducing11

its size and thus the disk space used. The library components are called when12

needed. 1
13

Two Linux C/C++ library types can be created:14

1The text in this section’s introduction is abridged from
http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html.

art Documentation

http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html

Chapter 5: Get your C++ up to Speed 5–14

• static libraries of object code (filenames for which end in .a) that are15

linked with, and become part of, the application (art does not use static16

libraries)17

• dynamically linked, shared object libraries (filenames end in .so): These18

can be used in two ways.19

– Dynamically linked at run time but statically aware. The libraries20

must be available during the compile/link phase. The shared objects21

are not included in the executable component but are tied to the22

execution.23

– Dynamically loaded/unloaded and linked during execution (i.e., simi-24

lar to browser plug-in) using the dynamic linking/loader system func-25

tions.26

5.5.1 What You Will Learn27

In this section you will repeat the example of Section 5.4 with a variation. You28

will create an object library, insert function.o into that library and use that29

library in the link step. This pattern generalizes easily to the case that you30

will encounter in your experiment software, where object libraries will typically31

contain many object files.32

5.5.2 Building and Running the Exercise33

To perform this exercise, do the following:1

1. Log in and establish your working environment (Section 5.2).2

2. cd to your working directory.3

3. cd to the directory for this exercise and get a directory listing:4

$ cd Libraries/v15

$ ls6

build build2 build3 function.cc function.h t1.cc7

8

The three files, function.cc, function.h and t1.cc are identical9

to those from the previous exercise. The three files, build, build210

and build3 are scripts that show three different ways to build the main11

program in this exercise.12

4. Compile and link this exercise using build, then compare the directory13

listing to that taken pre-build:14

$ build15

$ ls16

build build3 function.h libpackage1.a t1.cc17

art Documentation

Chapter 5: Get your C++ up to Speed 5–15

build2 function.cc function.o t1 t1.o18

19

5. Execute the main program:20

$./t121

a = 322

function(a) 623

This matches the expected printout. Now let’s look at the script build. It has24

four parts:25

1. Compile function.cc; the same as the previous exercise:26

$ c++ -Wall -Wextra -pedantic -Werror -std=c++11 -c function.cc27

2. Create the library named libpackage1.a and add function.o to it:28

$ ar rc libpackage1.a function.o29

The name of the library must come before the name of the object file.30

3. Compile t1.cc; the same as the previous exercise:31

$ c++ -Wall -Wextra -pedantic -Werror -std=c++11 -c t1.cc32

4. Link the main program against libpackage1.a and the system libraries:33

$ c++ -o t1 t1.o libpackage1.a34

The two new features are in step 2, which creates the object library, and step35

4, in which function.o is replaced in the link list with libpackage1.a. If36

you have many .o files to add to the library, you may add them one at a time1

by repeating step 2 or you may add them all in one command. When you do the2

latter you may name each object file separately or may use a wildcard:3

$ ar rc libpackage1.a *.o4

In libpackage1.a the string package1 has no special meaning; it was an5

arbitrary name chosen for this exercise. Actually it was chosen in anticipation6

of a future exercise that is not yet written up.7

The other parts of the name, the prefix lib and the suffix .a, are part of8

a long-standing Unix convention and some Unix tools presume that object li-9

braries are named following this convention. You should always follow this10

convention. The use of this convention is illustrated by the scripts build2 and11

build3.12

To perform the exercise using build2, stay in the same directory and cleanup13

then rebuild as follows:14

1. remove files built by build115

$ rm function.o t1.o libpackage1.a t116

2. build the code with build2 and look at the directory contents17

$ build218

$ ls19

art Documentation

Chapter 5: Get your C++ up to Speed 5–16

build build3 function.h libpackage1.a t1.cc20

build2 function.cc function.o t1 t1.o21

3. run t1 as before22

The only difference between build and build2 is the link line. The version23

from build is:24

c++ -o t1 t1.o libpackage1.a25

while that from build2 is:26

c++ -o t1 t1.o -L. -lpackage127

In the script build, the path to the library, relative or absolute, is written28

explicitly on the command line. In the script build2, two new elements are29

introduced. The command line may contain any number of -L options; the30

argument of each option is the name of a directory. The ensemble of all of31

the -L options forms a search path to look for named libraries; the path is32

searched in the order in which the -L options appear on the line. The names of33

libraries are specified with the -l options (this is a lower case letter L, not the34

numeral one); if a -l option has an argument of XXX (or package1), then the35

linker with search the path defined by the -L options for a file with the name36

libXXX.a (or libpackage1.a).37

In the above, the dot in -L. is the usual Unix pathname that denotes the38

current working directory. And it is important that there be no whitespace1

after a -L or a -l option and its value.2

This syntax generalizes to multiple libraries in multiple directories as follows.3

Suppose that the libraries libaaa.a, libbbb.a and libccc.a are in the4

directory L1 and that the libraries libddd.a, libeee.a and libfff.a are5

in the directory L2. In this case, the link list would look like (split here into6

two lines):7

-L<path-to-L1> -laaa -lbbb -lccc8

-L<path-to-L2> -lddd -leee -lfff9

The -L -l syntax is in common use throughout many Unix build systems: if10

your link list contains many object libraries from a single directory then it is11

not necessary to repeatedly specify the path to the directory; once is enough.12

If you are writing link lists by hand, this is very convenient. In a script, if the13

path name of the directory is very long, this convention makes a much more14

readable link list.15

To perform the exercise using build3, stay in the same directory and cleanup16

then rebuild as follows:17

1. remove files built by build218

$ rm function.o t1.o libpackage1.a t119

art Documentation

Chapter 5: Get your C++ up to Speed 5–17

2. build the code with build2 and look at the directory contents20

$ build321

$ ls22

build build3 function.h libpackage1.a t1.cc23

build2 function.cc function.o t124

3. run t1 as before25

The difference between build2 and build3 is that build3 compiles the main26

program and links it, all one one line. build2, on the other hand did the two27

steps separately.28

5.6 Classes29

5.6.1 Introduction30

The comments in the sample program used in Section 5.3 empha-31

sized that every variable has a type: int, float, std::string,32

std::vector<std::string>, and so on. One of the basic building blocks33

of C++ is that users may define their own types; user-defined types may be34

built-up from all types, including other user-defined types.35

The most common user-defined type is called a class(γ). As you work through36

the Workbook exercises, you will see classes that are defined by the Workbook37

itself; you will also see classes defined by the toyExperiment UPS product; you38

will see classes defined by art and you will see classes defined by the many1

UPS products that support art . You will also write some classes of your own.2

When you work with the software for your experiment you will work with classes3

defined within your experiment’s software.4

In general, a class contains both a declaration (what it consists of) and an in-5

stantiation(γ) (what to do with the parts). The declaration contains some data6

(called data members or member datum) plus some functions (called member7

functions) that will (when instantiated) operate on that data, but it is legal for8

a class declaration (and therefore, a class) to contain only data or only functions.9

A class declaration has the form shown in Listing 5.1.10

Listing 5.1: The form of a class declaration

1 class MyClassName{11

212

3 // required: declarations of all members of the class13

4 // optional: definitions of some members of the class14

515

6 };16

art Documentation

Chapter 5: Get your C++ up to Speed 5–18

The string class is a keyword that is reserved to C++ and may not be used17

for any user-defined identifiers.2 This construct tells the C++ compiler that18

MyClassName is the name of a class; everything that is between the braces19

is part of the class declaration. The remainder of Section 5.6 will give many20

examples of members of a class.21

In a class declaration, the semi-colon after the closing brace is important.22

The upcoming sections will illustrate some features of classes, with an emphasis23

on features that will be important in the earlier Workbook exercises. This is24

not indended to be a comprehensive description of classes. To illustrate, we25

will show nine versions of a class named Point that represents a point in a26

plane. The first version will be simple and each subsequent version will add27

features.28

This documentation will use technically correct language so that you will find29

it easier to read the standard reference materials.30

5.6.2 C++ Exercise 4 v1: The Most Basic Version31

Here you will see a very basic version of the class Point and an illustration of32

how Point can be used. The ideas of data members, objects and instantiation33

will be defined.34

To build and run this example:35

1. Log in and follow the follow the steps in Section 5.2.1

2. cd to the directory for this exercise and examine it2

$ cd Classes/v1/3

$ ls4

Point.h ptest.cc5

Within the subdirectory v1 the main program for this exercise is the6

file ptest.cc. The file Point.h contains the first version of the class7

Point; shown in Listing 5.2.8

3. Build the exercise.9

$../build10

$ ls11

Point.h ptest ptest.cc12

The file named ptest is the executable program.13

4. Run the exercise.14

$./ptest15

p0: (2.31827e-317, 0)16

p0: (1, 2)17

2 An identifier is a user defined name; this includes, for example, the names of classes, the
names of members of classes, the names of functions, the names of objects and the names of
variables.

art Documentation

Chapter 5: Get your C++ up to Speed 5–19

p1: (3, 4)18

p2: (1, 2)19

Address of p0: 0x7fff883fe68020

Address of p1: 0x7fff883fe67021

Address of p2: 0x7fff883fe66022

The values printed out in the first line of the output may be different when you23

run the program (remember initializaion?). When you look at the code you will24

see that p0 is not properly initialized and therefore contains stale data. The25

last three lines of output should also differ when you run the program; they are26

memory addresses.27

Look at the header file Point.h which shows the basic version of the class28

Point. The three lines starting with # make up a code guard, described in29

Section 30.8.30

Listing 5.2: The contents of v1/Point.h
1 #ifndef Point_h31

2 #define Point_h32

333

4 class Point {34

5 public:35

6 double x;36

7 double y;1

8 };2

93
10 #endif /* Point_h */4

The class declaration says that the name of the class is Point; the body of the5

class declaration (the lines between the braces {...}) declares two data members6

of the class, named x and y, both of which are of type double. (The plural7

of data member is sometimes written data members and sometimes as member8

data.) The line public: says that the member data x and y are accessi-9

ble by any code. Instead of public, members may be declared private or10

protected; these ideas will be discussed later.11

In this exercise there is no file Point.cc because the class Point consists12

only of a declaration; there is no implementation to put in a corresponding .cc13

file.14

Look at the function main()) (the main program) in ptest.cc, which illus-15

trates the use of the class Point; see Listing 5.3. This file includes Point.h16

so that the compiler will know about the class Point when it begins execu-17

tion. It also includes the C++ header <iostream> which enables printing18

with std::cout.19

Listing 5.3: The contents of v1/ptest.cc
1 #include "Point.h"20

221

3 #include <iostream>22

423

art Documentation

Chapter 5: Get your C++ up to Speed 5–20

5 int main() {24

625

7 Point p0;26

8 std::cout << "p0: (" << p0.x << ", " << p0.y << ")" << std::endl;27

928

10 p0.x = 1.0;29

11 p0.y = 2.0;30

12 std::cout << "p0: (" << p0.x << ", " << p0.y << ")" << std::endl;31

1332

14 Point p1;33

15 p1.x = 3.0;34

16 p1.y = 4.0;35

17 std::cout << "p1: (" << p1.x << ", " << p1.y << ")" << std::endl;36

1837

19 Point p2 = p0;38

20 std::cout << "p2: (" << p2.x << ", " << p2.y << ")" << std::endl;39

2140

22 std::cout << "Address of p0: " << &p0 << std::endl;41

23 std::cout << "Address of p1: " << &p1 << std::endl;42

24 std::cout << "Address of p2: " << &p2 << std::endl;1

252
26 return 0;3

27 }4

Line 7, the first line in the main() program is:5

Point p0;6

This declares that p0 is the name of a variable whose type is (the class) Point.7

When this line of code is executed, the program will ensure that memory has8

been allocated3 to hold the data members of p0. If the class Point contained9

code to initialize data members then the program would also run that, but10

Point does not have any such code. Therefore the data members take on11

whatever values happened to preexist in the memory that was allocated for12

them.13

Some other standard pieces of C++ nomenclature can now be defined:14

1. The identifier p0 refers to a variable in the source code whose type is15

Point.16

2. When the running program executes this line of code, it instantiates(γ)17

the object with the identifier p0.18

3. The object(γ) with the identifier p0 is an instance(γ) of the class Point.19

4. The identifier p0 now also refers to a region of memory containing the20

bytes belonging to an object of type Point.21

An important take-away from the above is that a variable is an identifier in a22

source code file while an object is something that exists in the computer memory.23

Most of the time a one-to-one correspondence exists betweeen variables in the24

3 This is deliberately vague — there are many ways to allocate memory, and sometimes
the memory allocation is actually done much earlier on, perhaps at link time or at load time.

art Documentation

Chapter 5: Get your C++ up to Speed 5–21

source code and objects in memory. There are exceptions, however, for example,25

sometimes a compiler needs to make anonymous temporary objects that do not26

correspond to any variable in the source code, and sometimes two or more27

variables in the source code can refer to the same object in memory.28

Line 8 (shown split here):29

std::cout << "p0: (" << p0.x << ", "30

<< p0.y << ")" << std::endl;31

prints out the values of the two data members. In C++, the dot (period)32

character, when used this way, is called the member selection operator.33

Lines 10 and 11 show how to modify the values of the data members of the34

object p0. Line 12 makes a printout to verify that the values have indeed35

changed.36

Lines 14-16 declare another object, named p1, of type Point and assign values37

to its data members. These are followed by a print statement.38

Line 19, (Point p2 = p0;) declares that the object named p2 is of type39

Point and it assigns the value of p2 to be a copy of the value of p0. When the40

compiler sees this line, it knows to copy all of the data members of the class;41

this is a tremendous convenience for classes with many data members. Again,42

a print statement follows (line 20).43

The last section of the main program (and of ptest.cc itself), lines 22-24,1

prints the address of each of the three objects, p0, p1 and p2. The addresses2

are represented in hexadecimal (base 16) format. On almost all computers, the3

length of a double is eight bytes. Therefore an object of type Point will have4

a length of 16 bytes. If you look at the printout made by ptest you will see5

that the addresses of p0, p01 and p2 are separated by 16 bytes; therefore the6

three objects are contiguous in memory.7

Figure 5.1 shows a diagram of the computer memory at the end of running8

ptest; the outer box (blue outline) represents the memory of the computer;9

each filled colored box represents one of the three objects in this program. The10

diagram shows them in contiguous memory locations, which is not necessary;11

there could have been gaps between the memory locations in Figure 5.1.12

Now, for a bit more terminology: each of the objects p0, p1 and p2 has the13

three attributes required of an object :14

1. a state, given by the values of its data members15

2. the ability to have operations performed on it: e.g., setting/reading in16

value of a data member, assigning value of object of a given type to another17

of the same type18

3. an identity : a unique address in memory19

art Documentation

Chapter 5: Get your C++ up to Speed 5–22

Figure 5.1: Memory diagram at the end of a run of Classes/v1/ptest.cc

5.6.3 C++ Exercise 4 v2: The Default Constructor20

This exercise expands the class Point by adding a default constructor(γ).21

To build and run this example:22

1. Log in and follow the follow the steps in Section 5.2.23

2. Go to the directory for this exercise:24

$ cd Classes/v225

$ ls26

Point.cc Point.h ptest.cc27

In this example, Point.cc is a new file.28

3. Build the exercise:29

$../build30

$ ls31

Point.cc Point.h ptest ptest.cc32

33

4. Run the exercise:34

$ ptest35

p0: (0, 0)36

p0: (3.1, 2.7)37

When you run the code, all of the printout should match the above printout38

exactly.39

Look at Point.h. There is one new line in the body of the class declara-40

tion:1

art Documentation

Chapter 5: Get your C++ up to Speed 5–23

Point();2

The parentheses tell you that this new member is some sort of function. A3

C++ class may have several different kinds of functions. A function that has4

the same name as the class itself has a special role and is called a constructor ; if5

a constructor takes no arguments it is called a default constructor. In informal6

written material, the word constructor is sometimes written as c’tor.7

Point.h declares that the class Point has a default constructor, but does not8

define it (i.e., provide an implementation). The definition/implementation of9

the constructor is found in the file Point.cc.10

Look at the file Point.cc. It “includes” the header file Point.h because the11

compiler needs to know all about this class before it can compile the code that it12

finds in Point.cc. The rest of the file contains a definition of the constructor.13

The syntax Point:: says that the function to the right of the :: is part of (a14

member of) the class Point. The body of the constructor gives initial values15

to the two data members, x and y.16

Look at the program ptest.cc. The first line of the main program is again17

Point p0;18

When the program executes this line, the first step is the same as before: it19

ensures that memory has been allocated for the data members of p0. This20

time, however, it also calls the default constructor of the class Point, which21

initializes the two data members such that they have well defined initial values.22

This is reflected in the printout made by the next line.1

The next block of the program assigns new values to the data members of p02

and prints them out.3

In the previous example, Classes/v1/ptest.cc, the following steps formally4

took place. When a class does not contain a default constructor, the compiler5

will write one for you; this default constructor simply default constructs each of6

the data members. The default constructor of the built-in type double does7

nothing, leaving the data member uninitialized. The compiler knew all of this8

and almost certainly did not waste time writing and calling do-nothing con-9

structors; it simply made sure that the memory was allocated. This discussion10

is presented here since it would have sounded silly to say all of that before giving11

you an example of a real default constructor.12

5.6.4 C++ Exercise 4 v3: Constructors with Arguments13

This exercise introduces three new ideas:14

1. constructors with arguments15

2. the copy constructor16

art Documentation

Chapter 5: Get your C++ up to Speed 5–24

3. single phase construction vs two phase construction17

To build and run this exercise, cd to the directory Classes/v3 and follow the18

same instructions as in Section 5.6.3. When you run the ptest program, you19

should see the following output:20

$ ptest21

p0: (1, 2)22

p1: (1, 2)23

Look at the file Point.h. This contains one new line:24

Point(double ax, double ay);25

This line declares a second constructor; we know it is a constructor because26

it is a function whose name is the same as the name of the class. It is distin-27

guishable from the default constructor because its argument list is different than28

that of the default constructor. As before, the file Point.h contains only the29

declaration of this constructor, not its definition (aka implementation).30

Look at the file Point.cc. The new content in this file is the implementation of31

the new constructor; it assigns the values of its arguments to the data members.32

The names of the arguments, ax and ay, have no meaning to the compiler; they33

are just identifiers. It is good practice to choose names that bear an obvious34

relationship to those of the data members. One convention that is sometimes35

used is to make the name of the argument be the same as that of the data36

member, but with a prefix lettter a, for argument. Whatever convention you37

(or your experiment) choose(s), use it consistently. When you update code that1

was initially written by someone else, follow whatever convention they adopted.2

Choices of style should be made to reinforce the information present in the code,3

not to fight it.4

Look at the file ptest.cc. The first line of the main program is now:5

Point p0(1.,2.);6

This line declares the variable p0 and initializes it by calling the new con-7

structor defined in this section. The next line prints the value of the data8

members.9

The next line of code10

Point p1(p0);11

introduces the copy constructor, which is another constructor that can be writ-12

ten by the compiler if the user chooses not to provide one. This exercise did not13

provide a copy constructor so the compiler-written one was used; that version14

simply does a copy, data member by data member, from p0 to p1. The next15

line prints the values of the data members of p1 and you can see that the copy16

constructor worked as expected.17

art Documentation

Chapter 5: Get your C++ up to Speed 5–25

For any class whose data members are either built-in types or simple aggregates18

of built-in types, you should usually let the compiler write the copy constructor19

for you. Point is an example of such a class. If your class has data members20

that are pointers, or data members that manage some external resource, such21

as a file that you are writing to, then you will very likely need to write your22

own copy constructor. There are some other cases in which you should write23

your own copy constructor, but discussing them here is beyond the scope of this24

document. When you need to write your own copy constructor, you can learn25

how to do so from any standard C++ reference; see Section 5.7.26

Notice that in the previous version of ptest.cc, the variable p0 was initialized27

in three lines:28

Point p0;29

p0.x = 3.1;30

p0.y = 2.7;31

This is called two-phase construction. In contrast, the present version uses32

single-phase construction in which the variable p0 is initialized in one line:33

Point p0(1.,2.);34

We strongly recommend using single-phase construction whenever possible. Obviously35

it takes less real estate, but more importantly:36

1. Single-phase construction more clearly conveys the intent of the program-37

mer: the intent is to initialize the object p0. The second version says38

this directly. In the first version you needed to do some extra work to1

recognize that the three lines quoted above formed a logical unit distinct2

from the remainder of the program. This is not difficult for this simple3

class, but it can become so with even a little additional complexity.4

2. Two-phase construction is less robust. It leaves open the possibility that5

a future maintainer of the code might not recognize all of the follow-on6

steps that are part of construction and will use the object before it is fully7

constructed. This can lead to difficult-to-diagnose run-time errors.8

5.6.5 C++ Exercise 4 v4: Colon Initializer Syntax9

This version of the class Point introduces colon initializer syntax for construc-10

tors.11

To build and run this exercise, cd to the directory Classes/v4 and follow the12

same instructions as in the previous two sections. When you run the ptest13

program you should see the following output:14

$ ptest15

p0: (1, 2)16

p1: (1, 2)17

art Documentation

Chapter 5: Get your C++ up to Speed 5–26

The file Point.h is unchanged between this version and the previous one.18

Now look at the file Point.cc, which contains the definitions of both con-19

structors. The first thing to look at is the default constructor, which has been20

rewritten using colon initializer syntax. The rules for the colon-initializer syntax21

are:22

1. A colon must immediately follow the closing parenthesis of the argument23

list.24

2. There must be a comma-separated list of data members, each one initial-25

ized by calling one of its constructors.26

3. In the initializer list, the data members must be listed in the order in27

which they appear in the class declaration.28

4. The body of the constructor, enclosed in braces, must follow the initializer29

list.30

5. If a data member is missing from the initializer list, its default constructor31

will be called (constructors for the missing data members will be called in32

the order in which data members were specified in the class declaration).33

6. If no initializer list is present, the compiler will call the default constructor34

of every data member and it will do so in the order in which data members35

were specified in the class declaration.36

If you think about these rules carefully, you will see that in Classes/v3/Point.cc:37

1. the compiler did not find an initializer list, so it wrote one that default-38

constructed x and y1

2. it then wrote the code to make the assignments x=0 and y=02

On the other hand, when the compiler compiled the code for the default con-3

structor in Classes/v4/Point.cc, it did the following4

1. it wrote the code to construct x and y, both set to zero.5

Therefore, the machine code for the v3 version does more work than that for6

the v4 version. In practice Point is a sufficiently simple class that the compiler7

likely recognized and elided all of the unnecessary steps in v3; it is likely that8

the compiler actually produced identical code for the two versions of the class.9

For a more complex class, however, the compiler may not be able to recognize10

meaningless extra work and it will write the machine code to do that extra11

work.12

In many cases it does not matter which of these two ways you use to write13

a constructor; but on those occasions that it does matter, the right answer is14

always the colon-initializer syntax. So we strongly recommend that you always15

use the colon initializer syntax. In the Workbook, all classes are written with16

colon-initializer syntax.17

art Documentation

Chapter 5: Get your C++ up to Speed 5–27

Now look at the second constructor in Point.cc; it also uses colon-initializer18

syntax but it is laid out differently. The difference in layout has no meaning to19

the compiler — whitespace is whitespace. Choose which ever seems natural to20

you.21

Look at ptest.cc. It is the same as the version v3 and it makes the same22

printout.23

5.6.6 C++ Exercise 4 v5: Member functions24

This section will introduce member functions(γ), both const member func-25

tions(γ) and non-const member functions. It will also introduce the header26

<cmath>.27

To build and run this exercise, cd to the directory Classes/v5 and follow the28

same instructions as in Section 5.6.3. When you run the ptest program you29

should see the following output:30

$ ptest31

Before p0: (1, 2) Magnitude: 2.23607 Phi: 1.1071532

After p0: (3, 6) Magnitude: 6.7082 Phi: 1.1071533

Look at the file Point.h. Compared to version v4, this version contains three34

additional lines:35

double mag() const;36

double phi() const;37

void scale(double factor);38

All three lines declare member functions. As the name suggests, a member1

function is a function that can be called and it is a member of the class. Contrast2

this with a data member, such as x or y, which are not functions. A member3

function may access any or all of the member data of the class.4

The member function named mag does not take any arguments and it returns5

a double; you will see that the value of the double is the magnitude of the 2-6

vector from the origin to (x,y). The keyword const represents a contract7

between the definition/implementation of mag and any code that uses mag; it8

“promises” that the implementation of mag will not modify the value of any9

data members. The consequences of breaking the contract are illustrated in the10

homework at the end of this subsection.11

Similarly, the member function named phi takes no arguments, returns a double12

and has the const keyword. You will see that the value of the double is the13

azimuthal angle of the vector from the origin to the point (x,y).14

The third member function, scale, takes one argument, factor. Its return15

type is void, which means that it returns nothing. You will see that this mem-16

ber function multiplies both x and y by factor (i.e., changing their values).17

art Documentation

Chapter 5: Get your C++ up to Speed 5–28

This function declaration does not have the const keyword because it actually18

does modify member data.19

If a member function does not modify any data members, you should always20

declare it const simply as a matter of course. Any negative consequences of21

not doing so might only become apparent later, at which point a lot of tedious22

editing will be required to make everything right.23

Look at Point.cc. Near the top of the file an additional include directive has24

been added; <cmath> is a header from the C++ standard library that declares25

a set of functions for computing common mathematical operations and trans-26

formations. Functions from this library are in the namespace(γ) std.27

Later on in Point.cc you will find the definition of mag, which computes28

the magnitude of the 2-vector from the origin to (x,y). To do so, it uses29

std::sqrt, a function declared in the <cmath> header that takes the square30

root of its argument. The keyword const that was present in the declaration31

of mag must also be present in its definition.32

The next part of Point.cc contains the definition of the member function33

phi. To do its work, this member function uses the atan2 function from the34

standard library.35

The next part of Point.cc contains the definition of the member function36

scale. You can see that this member function simply multiplies the two data37

members by the value of the argument.38

The file ptest.cc contains a main()) program that illustrates these new1

features. The first line of this function declares and initializes an object, p0, of2

type Point. It then prints out the value of its data members, the value returned3

from calling the function mag and the value returned from calling phi. This4

shows how to access a member function: you write the name of the variable,5

followed by a dot (the member selection operator), followed by the name of the6

member function and its argument list.7

The next line calls the member function scale with the argument 3. The8

printout verifies that the call to scale had the intended effect.9

One final comment is in order. Many other modern computer languages have10

ideas very similar to C++ classes and C++ member functions; in some of those11

languages, the name method is the technical term corresponding to member12

function in C++. The name method is not part of the formal definition of13

C++, but is commonly used nonetheless. In this documentation, the two terms14

can be considered synonymous.15

Here we suggest four activities as homework to help illustrate the meaning of16

const and to familiarize you with the error messages produced by the C++17

compiler. Before moving to a subsequent activity, undo the changes that you18

made in the current activity.19

art Documentation

Chapter 5: Get your C++ up to Speed 5–29

1. In the definition of the member function Point::mag(), found in Point.cc,20

before taking the square root, multiply the member datum x by 2.21

double Point::mag() const{22

x *= 2.;23

return std::sqrt(x*x + y*y);24

}25

Then build the code again; you should see the following diagnostic mes-26

sage:27

Point.cc: In member function double Point::mag() const:28

Point.cc:13:8: error: assignment of member Point::x in read-only object29

2. In ptest.cc, change the first line to30

Point const p0(1,2);31

Then build the code again; you should see the following diagnostic mes-32

sage:33

ptest.cc: In function int main():34

ptest.cc:13:14: error: no matching function for call to35

Point::scale(double) const36

ptest.cc:13:14: note: candidate is:37

In file included from ptest.cc:1:0:38

Point.h:13:8: note: void Point::scale(double) <near match>39

Point.h:13:8: note: no known conversion for implicit this40

parameter from const Point* to Point*1

3. In Point.h, remove the const keyword from the declaration of the mem-2

ber function Point::mag():3

double mag();4

Then build the code again; you should see the following diagnostic mes-5

sage:6

Point.cc:12:8: error: prototype for double Point::mag() const7

does not match any in class Point8

In file included from Point.cc:1:0:9

Point.h:11:10: error: candidate is: double Point::mag()10

4. In Point.cc, remove the const keyword in definition of the member11

function mag. Then build the code again; you should see the following12

diagnostic message:13

Point.cc:12:8: error: prototype for double Point::mag()14

does not match any in class Point15

In file included from Point.cc:1:0:16

Point.h:11:10: error: candidate is: double Point::mag() const17

The first two homework exercises illustrate how the compiler enforces the con-18

tract defined by the keyword const that is present at the end of the declaration19

art Documentation

Chapter 5: Get your C++ up to Speed 5–30

of Point::mag() and that is absent in the definition of the member function20

Point::scale(). The contract says that the definition of Point::mag()21

may not modify the values of any data members of the class Point; users of22

the class Point may count on this behaviour. The contract also says that23

the definition of the member function Point::scale() may modify the val-24

ues of data members of the class Point; users of the class Point must as-25

sume that Point::scale() will indeed modify member data and act accord-26

ingly.427

In the first homework exercise, the value of a member datum is modified, thereby28

breaking the contract. The compiler detects it and issues a diagnostic mes-29

sage.30

In the second homework exercise, the variable p0 is declared const; therefore31

the code may not call non-const member functions of p0, only const member32

functions. When the compiler sees the call to p0.mag() it recognizes that this33

is a call to const member function and compiles the call; when it sees the call34

to p0.scale(3.) it recognizes that this is a call to a non-const member35

function and issues a diagnostic message.36

The third and fourth homework exercises illustrate that the compiler considers37

two member functions that are identical except for the presence of the const38

keyword to be different functions5. In homework exercise 3, when the com-39

piler tried to compile Point::mag() const in Point.cc, it looked at the40

class declaration in Point.h and could not find a matching member function1

declaration; these was a close, but not exact match. Therefore it issued a diag-2

nostic message, telling us about the close match, and then stopped. Similarly,3

in homework exercise 4, it also could not find a match.4

5.6.7 C++ Exercise 4 v6: Private Data and Accessor5

Methods6

5.6.7.1 Setters and Getters7

This version of the class Point is used to illustrate the following ideas:8

1. The class Point has been redesigned to have private data members with9

access to them provided by accessor functions and setter functions.10

2. the this pointer11

3. Even if there are many objects of type Point in memory, there is only12

one copy of the code.13

4 C++ has another keyword, mutable, that one can use to exempt individual data members
from this contract. It’s use is beyond the scope of this introduction and it will be described
when it is encountered.

5 Another way of saying the same thing is that the const keyword is part of the signa-
ture(γ) of a function.

art Documentation

Chapter 5: Get your C++ up to Speed 5–31

A 2D point class, with member data in Cartesian coordinates, is not a good14

example of why it is often a good idea to have private data. But it does have15

enough richness to illustrate the mechanics, which is the purpose of this section.16

Section 5.6.7.3 discusses an example in which having private data makes obvious17

sense.18

To build and run this exercise, cd to the directory Classes/v6 and follow the19

same instructions as in Section 5.6.3. When you run the ptest program you20

should see the following output:21

$ ptest22

Before p0: (1, 2) Magnitude: 2.23607 Phi: 1.1071523

After p0: (3, 6) Magnitude: 6.7082 Phi: 1.1071524

p1: (0, 1) Magnitude: 1 Phi: 1.570825

p1: (1, 0) Magnitude: 1 Phi: 026

p1: (3, 6) Magnitude: 6.7082 Phi: 1.1071527

Look at Point.h. Compare it to the version in v5:28

$ diff -wb Point.h ../v5/29

Relative to version v5 the following changes were made:30

1. four new member functions have been declared,31

(a) double x() const;32

(b) double y() const;33

(c) void set(double ax, double ay);34

(d) void set(Point const& p);1

2. the data members have been declared private2

3. the data members have been renamed from x and y to x and y3

Yes, there are two functions named set. Since in C++ the full name of a4

member function encodes all of the following information:5

1. the name of the class it is in6

2. the name of the member function7

3. the argument list; that is the number, type and order of arguments8

4. whether or not the function is const9

the member functions both named set are completely different member func-10

tions. As you work through the Workbook you will encounter a lot of this and11

you should develop the habit of looking at the full function name (i.e., all the12

parts). The full name of a member function, turned into text string, is called13

the mangled name of the member function; each C++ compiler does this a little14

differently. All linker symbols related to C++ classes are the mangled names of15

the members.16

art Documentation

Chapter 5: Get your C++ up to Speed 5–32

If you want to see what mangled names are created for the class Point, you17

can do the following18

$ c++ -Wall -Wextra -pedantic -Werror \\19

-std=c++11 -c Point.cc20

$ nm Point.o21

You can understand the output of nm by reading the man page for nm.22

In a class declaration, if any of the keywords public, private, or protected23

appear, then all members following that keyword, and before the next such24

keyword, have the named property. In Point.h the two data members are25

private and all other members are public.26

Look at Point.cc. Compare it to the version in v5:27

$ diff -wb Point.cc ../v5/28

Relative to version v5 the following changes were made:29

1. the data members have been renamed from x and y to x and y30

2. an implementation is present for each of the four new member functions31

Inspect the code in the implementation of each of the new member functions.32

The member function x() simply returns the value of the data member x ;33

similarly for the member function y(). These are called accessors, accessor34

functions, or getters 6 . The notion of accessor is often extended to include any35

member function that returns the value of simple, non-modifying calculations36

on a subset of the member data; in this sense, the mag and phi functions of37

the Point class are considered accessors.1

The two member functions named set copy the values of their arguments into2

the data members of the class. These are, not surprisingly, called setters or3

setter functions.4

More generally, any member function that modifies the value of any member5

data is called a modifier.6

There is no requirement that there be accessors and setters for every data mem-7

ber of a class; indeed, many classes provide no such member functions for many8

of their data members. If a data member is important for managing internal9

state but is of no value to a user of the class, then you should certainly not10

provide an accessor or a setter.11

Now that the data members of Point are private, i.e., only the code within12

Point is permitted to access these data members directly. All other code must13

6 There is a coding style in which the function x() would have been called something like
GetX(), getX() or get x(); hence the name getters. Almost all of the code that you will see
in the Workbook omits the get in the names of accessors; the authors of this code view the
get as redundant. Within the Workbook, the exception is for accessors defined by ROOT.
The Geant4 package also includes the Get in the names of its accessors.

art Documentation

Chapter 5: Get your C++ up to Speed 5–33

Figure 5.2: Memory diagram at the end of a run of Classes/v6/ptest.cc

access this information via the accessor and setter functions.14

Look at ptest.cc. Compare it to the version in v5:15

$ diff -wb ptest.cc ../v5/16

Relative to version v5 the following changes were made:17

1. the printout has been changed to use the accessor functions18

2. a new section has been added to illustrate the use of the two set methods19

Presumably these are clear.20

Figure 5.2 shows a diagram of the computer memory at the end of running21

this version of ptest. The two boxes with the blue outlines represent sections22

of the computer memory; the part on the left represents that part that is re-23

served for storing data (such as objects) and the part on the right represents24

the part of the computer memory that holds the executable code. This is a25

big oversimplification because, in a real running program, there are many parts26

of the memory reserved for different sorts of data and many parts reserved for27

executable code.28

The key point in Figure 5.2 is that each object has its own member data but29

there is only one copy of the code. Even if there are thousands of objects of30

type Point, there will only be one copy of the code. When a line of code asks31

for p0.mag(), the computer will pass the address of p0 as an argument to32

the function mag(), which will then do its work. When a line of code asks for33

p1.mag(), the computer will pass the address of p1 as an argument to the34

function mag(), which will then do its work.1

art Documentation

Chapter 5: Get your C++ up to Speed 5–34

Intially this sounds a little weird: the previous paragraph talks about passing2

an argument to the function mag() but, according to the source code, mag()3

does not take any arguments! The answer is that all member functions have4

an implied argument that always must be present — the address of the object5

that the member function will do work on. Because it must always be there,6

and because the compiler knows that it must always be there, there is no point7

in actually writing it in the source code! It is by using this so called hidden8

argument that the code for mag() knew that x means one thing for p0 but9

that it means something else for p1.10

Every C++ member function has a variable whose name is this, which is11

a pointer to the object on which the member function will do its work. For12

example, the accessor for x() could have been written:13

double x() const { return this->x_; }14

This version of the syntax makes it much clearer how there can be one copy of15

the code even though there are many objects in memory; but it also makes the16

code harder to read once you have understood how the magic works. There are17

not many places in which you need to explicitly use the this pointer, but there18

will be some. For further information, consult standard C++ documentation19

(listed in Section 5.7).20

5.6.7.2 What’s the deal with the underscore?21

C++ will not permit you to use the same name for both a data member and22

its accessor. Since the accessor is part of the public interface, it should get the1

simple, obvious, easy-to-type name. Therefore the name of the data member2

needs to be decorated to make it distinct.3

The convention used in the Workbook exercises and in the toyExperiment UPS4

product is that the names of member data end in an underscore character.5

There are some other conventions that you may encounter:6

_name;7

__name;8

m_name;9

mName;10

You may also see the choice of a leading underscore, or double underscore,11

followed by a capital letter. Never do this.12

The compiler promises that all of the linker symbols it creates will begin with13

a leading single or double underscore, followed by a capital letter. Some of the14

identifiers that you define in a C++ class will be used as part of a linker symbol.15

If you chose identifiers that match the pattern reserved for symbols created by16

the compiler there is a chance you will have naming collision with a compiler17

art Documentation

Chapter 5: Get your C++ up to Speed 5–35

defined symbol. While this is a very small risk, it seems wise to adopt habits18

that guarantee that it can never happen.19

It is common to extend the pattern for decorating the names of member data20

to all member data, even those without accessors. One reason for doing so is21

just symmetry. A second reason has to do with writing member functions; the22

body of a member function will, in general, use both member data and vari-23

ables that are local to the member function. If the member data are decorated24

differently than the local variables, it can make the member functions easier to25

understand.26

5.6.7.3 An example to motivate private data27

This section describes a class for which it makes sense to have private data: a 2D28

point class that has data members r and phi instead of x and y. The author29

of such a class might wish to define a standard representation in which it is30

guaranteed that r be non-negative and that phi be on the domain 0 <= φ < 2π.31

If the data is public, the class cannot make these guarantees; any code can32

modify the data members and break the guarantee.33

If this class is implemented with private data manipulated by member functions,34

then the constructors and member functions can enforce the guarantees.35

The language used in the software engineering texts is that a guaranteed re-36

lationship among the data members is called an invariant. If a class has an37

invariant then the class must have private data.38

If a class has no invariant then one is free to choose public data. The Workbook39

and the toyExperiment never make this choice for the reason that mixing private1

and public data is very confusing to most beginners.2

5.6.8 C++ Exercise 4 v7: The inline keyword3

This section introduces the inline keyword.4

To build and run this exercise, cd to the directory Classes/v7 and follow the5

same instructions as in Section 5.6.3. When you run the ptest program you6

should see the following output:7

$ ptest8

p0: (1, 2) Magnitude: 2.23607 Phi: 1.107159

Look at Point.h and compare it to the version in v6. The new material added10

to this version is the implementation for the two accessors x() and y(). These11

accessors are defined outside of the class declaration.12

Look at Point.cc and compare it to the version in v6. You will see that the13

implementation of the accessors x() and y() has been removed.14

art Documentation

Chapter 5: Get your C++ up to Speed 5–36

Point.h now contains an almost exact copy of the the implementation of the15

accessor x() that was previously found in the file Point.cc; the difference is16

that it is now preceded by the keyword inline. This keyword tells the compiler17

that it has two options that it may choose from at its discretion.18

The first option is that the compiler may decline to write a callable member19

function x(); instead, whenever the member function x() is used, the compiler20

will insert the body of x() right into the machine code at that spot. This is21

called inlining the function. For something simple like an accessor, relative to22

explicitly calling a function, the inlined code is very likely to23

1. have a smaller memory footprint24

2. execute more quickly25

These are both good things.26

On the other hand, if you inline a bigger or more complex function, some nega-27

tive effects of inlining may appear. If the inlined function is used in many places28

and if the memory footprint of the inlined code is large compared to the mem-29

ory footprint of a function call, then the total size of the program can increase.30

There are various ways in which a large program might run more slowly than a31

logically equivalent but smaller program. So, if you inline large functions, your32

program may actually run more slowly!33

When the compiler sees the inline keyword, it also has a second option: it can34

choose to ignore it. When the compiler chooses this option it will write many35

copies of the code for the member function — one copy for each compilation36

unit7 in which the function is called. Each compilation unit only knows about1

its own copy of the function and the compiler calls that copy as needed. The net2

result is completely negative: the function call is not actually elided so there is3

no time savings from that; moreover the code has become bigger because there4

are multiple copies of the function in memory; the larger memory footprint can5

further slow down execution; and compilation takes longer because multiple6

copies of the function must be compiled.7

C++ does not permit you to force inlining; you may only give a hint to the8

compiler that a function is appropriate for inlining.9

The bottom line is that you should always inline simple accessors and simple10

setters. Here the adjective simple means that they do not do any significant11

computation and that they do not contain any if statements or loops. The12

decision to inline anything else should only follow careful analysis of information13

produced by a profiling tool.14

Look at the definition of the member function y() in Point.h. Compared15

to the definition of the member function x() there is small change in whites-16

pace. This difference is not meaningful to the compiler. You will see several17

7 A compilation unit is the unit of code that the compiler considers at one time. For most
purposes, each .cc file is its own compilation unit.

art Documentation

Chapter 5: Get your C++ up to Speed 5–37

other variations on whitespace when you look at code in the Workbook and its18

underlying packages.19

5.6.9 C++ Exercise 4 v8: Defining Member Functions20

within the Class Declaration21

The version of Point in this section introduces the idea that you may provide22

the definition (implementation) of a member function at the point that it is23

declared inside the class declaration. This topic is introduced now because you24

will see this syntax as you work through the Workbook.25

To build and run this exercise, cd to the directory Classes/v8 and follow the26

same instructions as in Section 5.6.3. When you run the ptest program you27

should see the following output:28

$ ptest29

p0: (1, 2) Magnitude: 2.23607 Phi: 1.1071530

This is the same output made by v7.31

Look at Point.h. The only change relative to v7 is that the definition of the32

accessor methods x() and y() has been moved into the class declaration.33

The files Point.cc and ptest.cc are unchanged with respect to v7.34

This version of Point.h shows that you may define any member function in-35

side the class declaration. When you do this, the inline keyword is implicit.36

Section 5.6.8 discussed some cautions about inappropriate use of inlining; those37

same cautions apply when a member function is defined inside the class decla-38

ration.39

When you define a member function within the class declaration, you must not1

prefix the function name with the class name and the scope resolution operator;2

that is,3

double Point::x() const { return x_; }4

would produce a compiler diagnostic.5

In summary, there are two ways to write inlined definitions of member functions.6

In most cases, the two are entirely equivalent and the choice is simply a matter7

of style. The one exception occurs when you are writing a class that will become8

part of an art data product, in which case it is recommended that you write9

the definitions of member functions outside of the class declaration.10

When writing an art data product, the code inside that header file is parsed by11

software that determines how to write objects of that type to the output disk12

files and how to read objects of that type from input disk files. The software13

that does the parsing has some limitations and we need to work around them.14

The work arounds are easiest if any member functions definitions in the header15

art Documentation

Chapter 5: Get your C++ up to Speed 5–38

file are placed outside of the class declarations. For details see16

17

https://cdcvs.fnal.gov/redmine/projects/art/wiki/Data Product Design Guide#Issues-18

mostly-related-to-ROOT19

5.6.10 C++ Exercise 4 v9: The stream insertion opera-20

tor21

The version of Point in this section illustrates how to write a stream insertion22

operator. This is the piece of code that lets you print an object without having23

to print each data member by hand, for example:24

Point p0(1,2);25

std::cout << p0 << std::endl;26

To build and run this exercise, cd to the directory Classes/v9 and follow the27

same instructions as in Section 5.6.3. When you run the ptest program you28

should see the following output:29

$ ptest30

p0: (1, 2) Magnitude: 2.23607 Phi: 1.1071531

This is the same output made by v7 and v8.32

Look at Point.h. The changes relative to v7 are the following two addi-33

tions:34

1. an include directive for the header <iosfwd>35

2. a declaration for the stream insertion operator36

Look at Point.cc. The changes relative to v7 are the following two addi-37

tions:1

1. an include directive for the header <iostream>2

2. the definition of the stream insertion operator.3

Look at ptest.cc. The only change relative to v7 is that the printout now4

uses the stream insertion operator for p0 instead of inserting each data member5

of p0 by hand.6

In Point.h, the stream insertion operator is declared as (shown here on two7

lines)8

std::ostream& operator<<9

(std::ostream& ost, Point const& p);10

If the class whose type is used as second argument is declared in a namespace,11

then the stream insertion operator must be declared in the same namespace.12

art Documentation

https://cdcvs.fnal.gov/redmine/projects/art/wiki/Data_Product_Design_Guide#Issues-mostly-related-to-ROOT
https://cdcvs.fnal.gov/redmine/projects/art/wiki/Data_Product_Design_Guide#Issues-mostly-related-to-ROOT
https://cdcvs.fnal.gov/redmine/projects/art/wiki/Data_Product_Design_Guide#Issues-mostly-related-to-ROOT

Chapter 5: Get your C++ up to Speed 5–39

When the compiler sees a << operator that has an object of type std::ostream13

on its left hand side and an object of type Point on its right hand side, then the14

compiler will look for a function named operator<< whose first argument is of15

type std::ostream& and whose second argument is of type Point const&.16

If it finds such a function it will call that function to do the work; if it cannot17

find such a function it will issue a compiler diagnostic.18

The reason that the function returns a std::ostream& is that this is the19

C++ convention that permits us to chain together multiple instances of the <<20

operator:21

Point p0(1,2), p1(3,4);22

std::cout << p0 << ‘‘ ‘‘ << p1 << std::endl;23

The C++ compiler parses this left to right. First it recognizes:24

std::cout << p0;25

and calls our stream insertion operator to do this work. Then it thinks of the26

rest of the line as:27

std::cout << ‘‘ ‘‘ << p1 << std::endl;28

Now it recognizes,29

std::cout << ‘‘ ‘‘;30

and calls the appropriate stream insertion operator to do that work. And so31

on.32

Look at the implementation of the stream insertion operator in Point.cc.33

The first argument, ost, is a reference to an object of type output stream; the34

name ost has no meaning to C++; it is just a variable. When writing this1

operator we don’t know and don’t care what the output stream is connected2

to; perhaps it is a file; perhaps it is standard output. In any case, you send3

output to ost just as you do to std::cout, which is just another object of4

type std::ostream. In this example we chose to enclose the values of x and5

y in parentheses and to separate them with a comma; this is simply our choice,6

not something required by C++ or by art .7

In this example, the stream insertion operator does not end by inserting a8

newline into ost. This is a very common choice as it allows the user of the9

operator to have full control about line breaks. For a class whose printout is10

very long and covers many lines, you might decide that this operator should end11

by inserting newline character; it’s your choice.12

If you wish to write a stream insertion operator for another class, just follow13

the pattern used here.14

If you want to understand more about why the operator is written the way that15

it is, consult the standard C++ references; see Section 5.7.16

art Documentation

Chapter 5: Get your C++ up to Speed 5–40

The stream insertion operator is a free function(γ), not a member function of17

the class Point; the tie to the class Point is via its second argument. Because18

this function is a free function, it could have been declared in its own header file19

and its implementation could be provided in its own .cc file. However that is20

not common practice. Instead the common practice is as shown in this example:21

to include it in Point.h and Point.cc.22

The choice of whether or not to put the declaration of the stream insertion23

operator into its own header file is a tradeoff between the following two criteria:24

25

1. it is convenient to have it there; otherwise you would have to remember26

to include an additional header file when you want to use this operator27

2. one can imagine many simple free functions that take an object of type28

Point as an argument. If we put them all inside Point.h, and if they29

are only infrequently used, then the compiler will waste time processing30

those declarations every time Point.h is included somewhere.31

Ultimately this is a judgement call and the code in this example follows the32

recommendations made by the art development team. Their recommendation33

is that the following sorts of free functions, and only these sorts, should be34

included in header files containing a class declaration:35

1. the stream insertion operator for that class36

2. out of class arithmetic and comparison operators37

With one exception, if including a function declaration in Point.h requires the38

inclusion of an additional header in Point.h, declare that function in a different1

header file. The exception is that it is okay to include <iosfwd>.2

5.6.11 Review3

The class Point is an example of a class that is primarily concerned with4

providing convenient access to the data it contains. Not all classes are like5

this; when you work through the Workbook, you will write some classes that6

are primarily concerned with packaging convenient access to a set of related7

functions.8

1. class9

2. object10

3. identifier11

4. free function12

5. member function13

art Documentation

Chapter 5: Get your C++ up to Speed 5–41

5.7 C++ References14

This section lists some recommended C++ references, both text books and15

online materials.16

The following references describe the C++ core language,17

• Stroustrup, Bjarne: “The C++ Programming Language, Special Third18

Edition”, Addison-Wesley, 2000. ISBN 0-201-70073-5.19

• http://www.cplusplus.com/doc/tutorial/20

The following references describe the C++ Standard Library,21

• Josuttis, Nicolai M., “The C++ Standard Library: Tutorial and Refer-22

ence”, Addison-Wesley, 1999. ISBN 0-201-37926-0.23

• http://www.cplusplus.com/reference24

The following contains an introductory tutorial. Many copies of this book are25

available at the Fermilab library. It is a very good introduction to the big ideas26

of C++ and Object Oriented Programming but it is not a fast entry point to27

the C++ skills needed for HEP.28

• Andrew Koenig and Barbara E. Moo, “Accelerated C++: Practical Pro-29

gramming by Example” Addison-Wesley, 2000. ISBN 0-201-70353-X.30

The following contains a discussion of recommended best practices,31

• Herb Sutter and Andrei Alexandrescu, “C++ Coding Standards: 10132

Rules, Guidelines, and Best Practices.”, Addison-Wesley, 2005. ISBN33

0-321-11358-6.34

art Documentation

http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/reference

Chapter 6: Using External Products in UPS 6–1

6 Using External Products in UPS35

Section 2.6.8 introduced the idea of external products. For the Intensity Frontier1

experiments (and for Fermilab-based experiments in general), access to exter-2

nal products is provided by a Fermilab-developed product-management package3

called Unix Product Support (UPS). An important UPS feature – demanded by4

most experiments as their code evolves – is its support for multiple versions of5

a product and multiple builds (e.g., for different platforms) per version.6

Another notable feature is its capacity to handle multiple databases of products.7

So, for example, on Fermilab computers, login scripts (see Section 3.9) set up8

the UPS system, providing access to a database of products commonly used at9

Fermilab.10

The art Workbook and your experiment’s code will require additional products11

(available in other databases). For example, each experiment will provide a copy12

of the toyExperiment product in its experiment-specific UPS database.13

In this chapter you will learn how to see which products UPS makes available,14

how UPS handles variants of a given product, how you use UPS to initialize a15

product provided in one of its databases and about the environment variables16

that UPS defines.17

6.1 The UPS Database List: PRODUCTS18

The act of setting up UPS defines a number of environment variables (discussed19

in Section 6.5), one of which is PRODUCTS. This particularly important envi-20

ronment variable merits its own section.21

The environment variable PRODUCTS is a colon-delimited list of directory names,1

i.e., it is a path (see Section 3.6). Each directory in PRODUCTS is the name of2

a UPS database, meaning simply that each directory functions as a repository3

of information about one or more products. When UPS looks for a product,4

it checks each directory in PRODUCTS, in the order listed, and takes the first5

match.6

art Documentation

Chapter 6: Using External Products in UPS 6–2

If you are on a Fermilab machine, you can look at the value of PRODUCTS7

just after logging in, before sourcing your site-specific setup script. Run8

printenv:9

$ printenv PRODUCTS10

It should have a value of11

/grid/fermiapp/products/common/db12

This generic Fermilab UPS database contains a handful of software products13

commonly used at Fermilab; most of these products are used by all of the14

Intensity Frontier Experiments. This database does not contain any of the15

experiment-specific software nor does it contain products such as ROOT (γ),16

Geant4 (γ), CLHEP or art . While these last few products are indeed used by17

multiple experiments, they are often custom-built for each experiment and as18

such are distributed via the experiment-specific (i.e., separate) UPS databases.19

After you source your site-specific setup script, look at PRODUCTS again. It20

will probably contain multiple directories, thus making many more products21

available in your “site” environment. For example, on the DS50+Fermilab site,22

after running the DS50 setup script, PRODUCTS contains:23

/ds50/app/products/:grid/fermiapp/products/common/db24

You can see which products PRODUCTS contains by running ls on its directories,25

one-by-one, e.g.,26

ls /grid/fermiapp/products/common/db27

28

afs git ifdhc mu2e python shrc ups29

cpn gitflow jobsub_tools oracle_tnsnames sam_web_client upd1

encp gits login perl setpath upd_libs2

3

$ ls /ds50/app/products4

art cetpkgsupport g4neutronxs libxml2 totalview5

artdaq clhep g4nucleonxs messagefacility toyExperiment6

art_suite cmake g4photon mpich upd7

art_workbook_base cpp0x g4pii mvapich2 ups8

boost cppunit g4radiative python xerces_c9

caencomm ds50daq g4surface root xmlrpc_c10

caendigitizer fftw gcc setup11

caenvme fhiclcpp gccxml smc_compiler12

cetbuildtools g4emlow geant4 sqlite13

cetlib g4neutron libsigcpp tbb14

Each directory name in these listings corresponds to the name of a UPS product.15

If you are on a different experiment, the precise contents of your experiment’s16

product directory may be slightly different. Among other things, both databases17

art Documentation

Chapter 6: Using External Products in UPS 6–3

contain a subdirectory named ups1; this is for the UPS system itself. In this18

sense, all these products, including art , toyExperiment and even the product(s)19

containing your experiment’s code, regard UPS as just another external prod-20

uct.21

6.2 UPS Handling of Variants of a Product22

An important feature of UPS is its capacity to make multiple variants of a23

product available to users. This of course includes different versions, but beyond24

that, a given version of a product may be built more than one way, e.g., for use by25

different operating systems (what UPS distinguishes as flavors). For example, a26

product might be built once for use with SLF5 and again for use with SLF6. A27

product may be built with different versions of the C++ compiler, e.g., with the28

production version and with a version under test. A product may be built with29

full compiler optimization or with the maximum debugging features enabled.30

Many variants can exist. UPS provides a way to select a particular build via an31

idea named qualifiers.32

The full identifier of a UPS product includes its product name, its version, its33

flavor and its full set of qualifiers. In Section 6.3, you will see how to fully34

identify a product when you set it up.35

6.3 The setup Command: Syntax and Func-36

tion37

Any given UPS database contains several to many, many products. To select a38

product and make it available for use, you use the setup command.39

In most cases the correct flavor can be automatically detected by setup and40

need not be specified. However, if needed, flavor, in addition to various quali-1

fiers and options can be specified. These are listed in the UPS documentation2

referenced later in this section. The version, if specified, must directly follow3

the product name in the command line, e.g.,:4

$ setup <options> <product-name> <product-version> -f <flavor> \5

-q <qualifiers>6

Putting in real-looking values, it would look something like:7

$ setup -R myproduct v3_2 -f SLF5 -q BUILD_A8

What does the setup command actually do? It may do any or all of the9

following:10

1ups appears in both listings; as always, the first match wins!

art Documentation

Chapter 6: Using External Products in UPS 6–4

• define some environment variables11

• define some bash functions12

• define some aliases13

• add elements to your PATH14

• setup additional products on which it depends15

Setting up dependent products works recursively. In this way, a single setup16

command may trigger the setup of, say, 15 or 20 products.17

When you follow a given site-specific setup procedure, the PRODUCTS environ-18

ment variable will be extended to include your experiment-specific UPS reposi-19

tory.20

setup is a bash function (defined by the UPS product when it was initialized)21

that shadows a Unix system-configuration command also named setup, usually22

found in /usr/bin/setup or /usr/sbin/setup. Running the right ‘setup’23

should work automatically as long as UPS is properly initialized. If it’s not,24

setup returns the error message:25

You are attempting to run ‘‘setup’’ which requires administrative26

privileges, but more information is needed in order to do so.27

If this happens, the simplest solution is to log out and log in again.28

Few people will need to know more than the above about the UPS system.29

Those who do can consult the full UPS documentation at:30

http://www.fnal.gov/docs/products/ups/ReferenceManual/index.html31

6.4 Current Versions of Products32

For some UPS products, but not all, the site administrator may define a partic-33

ular fully-qualified version of the product as the default version. In the language1

of UPS this notion of default is called the current version. If a current version2

has been defined for a product, you can set up that product with the com-3

mand:4

$ setup <product-name>5

When you run this, the UPS system will automatically insert the version and6

qualifiers of the version that has been declared current.7

Having a current version is a handy feature for products that add convenience8

features to your interactive environment; as improvements are added, you au-9

tomatically get them.10

art Documentation

http://www.fnal.gov/docs/products/ups/ReferenceManual/index.html

Chapter 6: Using External Products in UPS 6–5

However the notion of a current version is very dangerous if you want to ensure11

that software built at one site will build in exactly the same way on all other12

sites. For this reason, the Workbook fully specifies the version number and13

qualifiers of all products that it requires; and in turn, the products used by14

the Workbook make fully qualified requests for the products on which they15

depend.16

6.5 Environment Variables Defined by UPS17

When your login script or site-specific setup script initializes UPS, it defines18

many environment variables in addition to PRODUCTS (Section 6.1), one of19

which is UPS DIR, the root directory of the currently selected version of UPS.20

The script also adds $UPS DIR/bin to your PATH, which makes some UPS-21

related commands visible to your shell. Finally, it defines the bash function22

setup (see Sections 3.8 and 6.3). When you use the setup command, as23

illustrated below, it is this bash function that does the work.24

In discussing the other important variables, the toyExperiment product will be25

used as an example product. For a different product, you would replace “toy-26

Experiment” or “TOYEXPERIMENT” in the following text by the product’s27

name. Once you have followed your appropriate setup procedure (Table 4.1)28

you can issue the following command this is informational for the purposes of29

this section; you don’t need to do it until you start running the first Workbook30

exercise):31

$ setup toyExperiment v0 00 14 -qe2:prof32

The version and qualifiers shown here are the ones to use for the Workbook exer-33

cises. When the setup command returns, the following environment variables1

will be defined:2

TOYEXPERIMENT DIR defines the root DIRectory of the chosen UPS3

product4

TOYEXPERIMENT INC defines the path to the root directory of the C++5

header files that are provided by this product (so called because the header6

files are INCluded)7

TOYEXPERIMENT LIB defines the directory that contains all of the share-8

able object LIBraries (ending in .so) that are provided by this product9

Almost all UPS products that you will use in the Workbook define these three10

environment variables. Several, including toyExperiment, define many more.11

Once you’re running the exercises, you will be able to see all of the environ-12

ment variables defined by the toyExperiment product by issuing the following13

command:14

$ printenv | grep TOYEXPERIMENT15

art Documentation

Chapter 6: Using External Products in UPS 6–6

Many software products have version numbers that contain dot characters. UPS16

requires that version numbers not contain any dot characters; by convention,17

version dots are replaced with underscores. Therefore v0.00.09 becomes18

v0 00 09. Also by convention, the environment variables are all upper case,19

regardless of the case used in the product names.20

6.6 Finding Header Files21

6.6.1 Introduction22

Header files were introduced in Section 5.3.2. Recall that a header file typically23

contains the “parts list” for its associated .cc source file and is “included” in24

the .cc file.25

The software for the Workbook depends on a large number of external products;26

the same is true, on an even larger scale, for the software in your experiment.27

The preceeding sections in this chapter discussed how to establish a working28

environment in which all of these software products are available for use.29

When you are working with the code in the Workbook, and when you are30

working on your experiment, you will frequently encounter C++ classes and31

functions that come from these external products. An important skill is to be32

able to identify them when you see them and to be able to follow the clues33

back to their source and documentation. This section will describe how to do34

that.35

An important aid to finding documentation is the use of namespaces; if you are36

not familiar with namespaces, see Section 30.6 or consult the standard C++37

documentation.38

6.6.2 Finding art Header Files1

This subsection will use the example of the class art::Event to illustrate how2

to find header files from the art UPS product; this will serve as a model for3

finding header files from most other UPS products.4

The class that holds the art abstraction of an HEP event is named, art::Event;5

that is, the class Event is in the namespace art. In fact, all classes and func-6

tions defined by art are in the namespace art. The primary reason for this7

is to minimize the chances of accidental name collisions between art and other8

codes; but it also serves a very useful documentation role and is one of the clues9

you can use to find header files.10

If you look at code that uses art::Event you will almost always find that the11

file includes the following header file:12

art Documentation

Chapter 6: Using External Products in UPS 6–7

#include "art/Framework/Principal/Event.h"13

The art UPS product has been designed so that the relative path used to include14

any art header file starts with the directory art; this is another clue that the15

class or function of interest is part of art .16

When you setup the art UPS product, it defines the environment variable17

ART INC, which points to the root of the header file tree for art . You now have18

enough information to discover where to find the header file for art::Event;19

it is at20

$ART_INC/art/Framework/Principal/Event.h21

You can follow this same pattern for any class or function that is part of art .22

This will only work if you are in an environment in which ART INC has been23

defined, which will be described in Chapters 8 and 9.24

If you are a C++ beginner, you will likely find this header file difficult to un-25

derstand; you do not need to understand it when you first encounter it but, for26

future reference, you do need to know where to find it.27

Earlier in this section, you read that if a C++ file uses art::Event, it would28

almost always include the appropriate header file. Why almost always? Because29

the header file Event.h might already be included within one of the other30

headers that are included in your file. If Event.h is indirectly included in this31

way, it does not hurt also to include it explicitly, but it is not required that you32

do so.233

We can summarize this discussion as follows: if a C++ source file uses art::Event34

it must always include the appropriate header file, either directly or indirectly.35

art does not rigorously follow the pattern that the name of file is the same as1

the name of the class or function that it defines. The reason is that some files2

define multiple classes or functions; in most such cases the file is named after3

the most important class that it defines.4

Finally, from time to time, you will need to dig through several layers of header5

files to find the information you need.6

There are two code browsing tools that you can use to help navigate the layering7

of header files and to help find class declarations that are not in a file named8

for the class:9

1. use the art redmine(γ) repository browser:10

https://cdcvs.fnal.gov/redmine/projects/art/repository/revisions/master/show/art11

2. use the LXR code browser: http://cdcvs.fnal.gov/lxr/art/12

(In the above, both URLs are live links.)13

2 Actually there is small price to pay for redundant includes; it makes the compiler do
unnecessary work, and therefore slows it down. But providing some redundant includes as a
pedagodical tool is often a good trade-off; the Workbook will frequently do this.

art Documentation

https://cdcvs.fnal.gov/redmine/projects/art/repository/revisions/master/show/art
http://cdcvs.fnal.gov/lxr/art/

Chapter 6: Using External Products in UPS 6–8

6.6.3 Finding Headers from Other UPS Products14

Section 2.7 introduced the idea that the Workbook is built around a UPS prod-15

uct named toyExperiment, which describes a made-up experiment. All classes16

and functions defined in this UPS product are defined in the namespace tex,17

which is an acronym-like shorthand for toyExperiment (ToyEXperiment). (This18

shorthand makes it (a) easier to focus on the name of each class or function19

rather than the namespace and (b) quicker to type.)20

One of the classes from the toyExperiment UPS product is tex::GenParticle,21

which describes particles created by the event generator, the first part of the22

simulation chain (see Section 2.7.2). The include directive for this class looks23

like24

#include "toyExperiment/MCDataProducts/GenParticle.h"25

As for headers included from art , the first element in the relative path to the in-26

cluded file is the name of the UPS product in which it is found. Similarly to art ,27

the header file can be found using the environment variable TOYEXPERIMENT INC:28

$TOYEXPERIMENT_INC/toyExperiment/MCDataProducts/GenParticle.h29

With a few exceptions, discussed in Section 6.6.4, if a class or function from30

a UPS product is used in the Workbook code, it will obey the following pat-31

tern:32

1. The class will be in a namespace that is unique to the UPS product; the33

name of the namespace may be the full product name or a shortened34

version of it.35

2. The lead element of the path specified in the include directive will be the36

name of the UPS product.1

3. The UPS product setup command will define an environment variable2

named <PRODUCT-NAME> INC, where <PRODUCT-NAME> is in all capital3

letters.4

Using this information, the name of the header file will always be5

$<PRODUCT-NAME>_INC/<path-specified-in-the-include-directive>6

This pattern holds for all of the UPS products listed in Table 6.1.7

A table listing git- and LXR-based code browsers for many of these UPS prod-8

ucts can be found near the top of the web page:9

https://cdcvs.fnal.gov/redmine/projects/art/wiki10

6.6.4 Exceptions: The Workbook, ROOT and Geant411

There are three exceptions to the pattern described in Section 6.6.3:12

art Documentation

https://cdcvs.fnal.gov/redmine/projects/art/wiki

Chapter 6: Using External Products in UPS 6–9

Table 6.1: For selected UPS Products, this table gives the names of the associ-
ated namespaces. The UPS products that do not use namespaces are discussed
in Section 6.6.4. ‡The namespace tex is also used by the art Workbook, which
is not a UPS product.

UPS Product Namespace

art art
boost boost
cet cetlib
clhep CLHEP
fhiclcpp fhicl
messagefacility mf
toyExperiment tex‡

• the Workbook itself13

• ROOT14

• Geant415

The Workbook is so tightly coupled to the toyExperiment UPS product that all16

classes in the Workbook are also in its namespace, tex. Note, however, that17

classes from the Workbook and the toyExperiment UPS product can still be18

distinguished by the leading element of the relative path found in the include19

directives for their header files:20

• art-workbook for the Workbook21

• toyExperiment for the toyExperiment22

The ROOT package is a CERN-supplied software package that is used by art23

to write data to disk files and to read it from disk files. It also provides many24

data analysis and data presentation tools that are widely used by the HEP com-25

munity. Major design decisions for ROOT were frozen before namespaces were26

a stable part of the C++ language, therefore ROOT does not use namespaces.27

Instead ROOT adopts the following conventions:28

1. All class names by defined by ROOT start with the capital letter T29

followed by another upper case letter; for example, TFile, TH1F, and30

TCanvas.31

2. With very few exceptions, all header files defined by ROOT also start with32

the same pattern; for example, TFile.h, TH1F.h, and TCanvas.h.33

3. The names of all global objects defined by ROOT start with a lower case34

letter g followed by an upper case letter; for example gDirectory, gPad35

and gFile.36

The rule for writing an include directive for a header file from ROOT is to write37

its name without any leading path elements:1

art Documentation

Chapter 6: Using External Products in UPS 6–10

#include "TFile.h"2

All of the ROOT header files are found in the directory that is pointed to by3

the environment variable $ROOT INC. For example, to see the contents of this4

file you could enter:5

$ less $ROOT_INC/TFile.h6

Or you can the learn about this class using the reference manual at the CERN7

web site: http://root.cern.ch/root/html534/ClassIndex.html8

You will not see the Geant4 package in the Workbook but it will be used9

by the software for your experiment, so it is described here for completeness.10

Geant4 is a toolkit for modeling the propagation particles in electromagnetic11

fields and for modeling the interactions of particles with matter; it is the core of12

all detector simulation codes in HEP and is also widely used in both the Medical13

Imaging community and the Particle Astrophysics community.14

As with ROOT, Geant4 was designed before namespaces were a stable part of15

the C++ language. Therefore Geant4 adopted the following conventions.16

1. The names of all identifiers begin with G4; for example, G4Step and17

G4Track.18

2. All header files defined by Geant4 begin with G4; for example, G4Step.h19

and G4Track.h.20

Most of the header files defined by Geant4 are found in a single directory, which21

is pointed to by the environment variable G4INCLUDE.22

The rule for writing an include directive for a header file from Geant4 is to23

write its name without any leading path elements:24

#include "G4Step.h"25

The workbook does not set up a version of Geant4; therefore G4INCLUDE is1

not defined. If it were, you would look at this file by:2

$ less $G4INCLUDE/G4Step.h3

Both ROOT and Geant4 define many thousands of classes, functions and4

global variables. In order to avoid collisions with these identifiers, do not5

define any identifiers that begin with any of (case-sensitive):6

• T, followed by an upper case letter7

• g, followed by an upper case letter8

• G49

art Documentation

http://root.cern.ch/root/html534/ClassIndex.html

6–11

Part II10

Workbook11

art Documentation

Chapter 7: Preparation for Running the Workbook Exercises 7–1

7 Preparation for Running the Workbook12

Exercises13

7.1 Introduction14

You will run the Workbook exercises on a computer that is maintained by15

your experiment, either at Fermilab or at another institution. Many details16

of the working environment change from site to site1 and these differences are17

parameterized so that (a) it is easy to establish the required environment, and18

(b) the Workbook exercises work the same way at all sites. In this chapter19

you will learn how to find and log into the right machine remotely from your20

local machine (laptop or desktop), and make sure it can support your Workbook21

work.22

Note that is possible to install the Workbook software on your local (Unix-23

like) machine; instructions are available at . The instructions in this document24

will work whether the Workbook code is installed locally or on a remote ma-25

chine.26

7.2 Getting Computer Accounts on Workbook-27

enabled Machines28

In order to run the exercises in the Workbook, you will need an account on a29

machine that can access your site’s installation of the Workbook code. The ex-30

periments provide instructions for getting computer accounts on their machines31

(and various other information for new users) on web pages that they maintain,32

as listed in Table 7.1. The URLs in the table are live hyperlinks.33

Currently, each of the experiments using art has installed the Workbook code34

on one of its experiment machines in the Fermilab General Purpose Computing35

Farm (GPCF).36

1Remember, a site refers to a unique combination of experiment and institution.

art Documentation

Chapter 7: Preparation for Running the Workbook Exercises 7–2

Table 7.1: Experiment-specific Information for New Users

Experiment URL of New User Page

ArgoNeut https://cdcvs.fnal.gov/redmine/projects/larsoftsvn/wiki/Using LArSoft on the GPVM nodes

Darkside https://cdcvs.fnal.gov/redmine/projects/darkside-public/wiki/Before You Arrive

LArSoft https://cdcvs.fnal.gov/redmine/projects/larsoftsvn

LBNE https://cdcvs.fnal.gov/redmine/projects/larsoftsvn/wiki/Using LArSoft on the GPVM nodes

MicroBoone https://cdcvs.fnal.gov/redmine/projects/larsoftsvn/wiki/Using LArSoft on the GPVM nodes

Muon g-2 https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/NewGm2Person

Mu2e http://mu2e.fnal.gov/atwork/general/userinfo/index.shtml#comp

NOvA http://www-nova.fnal.gov/NOvA Collaboration Information/index.html

Table 7.2: Login machines for running the Workbook exercises
Experiment Name of Login Node

ArgoNeut argoneutvm.fnal.gov
Darkside ds50.fnal.gov
LBNE lbnevm.fnal.gov
MicroBoone uboonevm.fnal.gov
Muon g-2 gm2gpvm.fnal.gov
Mu2e mu2evm.fnal.gov
NOνA nova-offline.fnal.gov

At time of writing, the new-user instructions for all LArSoft-based experiments1

are at the LArSoft site; there are no separate instructions for each experi-2

ment.1

If you would like a computer account on a Fermilab computer in order to eval-2

uate art , contact the art team (see Section 2.4).3

7.3 Choosing a Machine and Logging In4

The experiment-specific machines confirmed to host the Workbook code are5

listed in Table 7.2 In most cases the name given is not the name of an actual6

computer, but rather a round-robin alias for a cluster. For example, if you7

log into mu2evm, you will actually be connected to one of the five computers8

mu2egpvm01 through mu2egpvm05. These Mu2e machines share all disks that9

are relevant to the Workbook exercises, so if you need to log in multiple times,10

it is perfectly OK if you are logged into two different machines; you will still see11

all of the same files.12

Each experiment’s web page has instructions on how to log in to its computers13

from your local machine.14

art Documentation

https://cdcvs.fnal.gov/redmine/projects/larsoftsvn/wiki/Using_LArSoft_on_the_GPVM_nodes
https://cdcvs.fnal.gov/redmine/projects/darkside-public/wiki/Before_You_Arrive
https://cdcvs.fnal.gov/redmine/projects/larsoftsvn
https://cdcvs.fnal.gov/redmine/projects/larsoftsvn/wiki/Using_LArSoft_on_the_GPVM_nodes
https://cdcvs.fnal.gov/redmine/projects/larsoftsvn/wiki/Using_LArSoft_on_the_GPVM_nodes
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/NewGm2Person
http://mu2e.fnal.gov/atwork/general/userinfo/index.shtml#comp
http://www-nova.fnal.gov/NOvA_Collaboration_Information/index.html

Chapter 7: Preparation for Running the Workbook Exercises 7–3

7.4 Launching new Windows: Verify X Connec-15

tivity16

Some of the Workbook exercises will launch an X window from the remote17

machine that opens in your local machine. To test that this works, type18

xterm &:19

$ xterm &20

This should, without any messages, give you a new command prompt. After a21

few seconds, a new shell window should appear on your laptop screen; if you22

are logging into a Fermilab computer from a remote site, this may take up to23

10 seconds. If the window does not appear, or if the command issues an error24

message, contact a computing expert on your experiment.25

To close the new window, type exit at the command prompt in the new win-1

dow:2

$ exit3

If you have a problem with xterm, it could be a problem with your Kerberos4

and/or ssh configurations. Try logging in again with ssh -Y.5

7.5 Choose an Editor6

As you work through the Workbook exericses you will need to edit files. Famil-7

iarize yourself with one of the editors available on the computer that is hosting8

the Workbook. Most Fermilab computers offer four reasonable choices: emacs,9

vi, vim and nedit. Of these, nedit is probably the most intuitive and user-10

friendly. All are very powerful once you have learned to use them. Most other11

sites offer at least the first three choices. You can always contact your local12

system administrator to suggest that other editors be installed.13

A future version of this documentation suite will include recommended config-14

urations for each editor and will provide links to documentation for each edi-15

tor.16

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–1

8 Exercise 1: Run Pre-built art Modules1

8.1 Introduction2

In this first exercise of the Workbook, you will be introduced to the FHiCL3

(γ) configuration language and you will run art on several modules that are4

distributed as part of the toyExperiment UPS product. You will not compile or5

link any code.6

8.2 Prerequisites7

Before running any of the exercises in this Workbook, you need to be familiar8

enough with the material discussed in Part I (Introduction) of this documenta-9

tion set and Chapter 7 to be able to find information as needed.10

If you are following the instructions below on a Mac computer, and if you are11

reading the instructions from a PDF file, be aware that if you use the mouse or12

trackpad to cut and paste text from the PDF file into your terminal window,13

the underscore characters will be turned into spaces. You will have to fix them14

before the commands will work.15

8.3 What You Will Learn16

In this exercise you will learn:17

1. when to use the site-specific setup procedure18

2. how to set up the toyExperiment UPS product19

3. how to run an art job20

4. how to control the number of events to process21

5. how to select different input files22

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–2

6. how to start at an event that is not the first event in the file23

7. how to concatenate input files24

8. how to write an output file25

9. some basics about the grammar and structure of a FHiCL file26

10. a little bit about the art run-time environment27

8.4 Running the Exercise28

8.4.1 The Pieces1

Several event-data input files have been provided for use by the Workbook2

exercises. These input files are packaged as part of the toyExperiment UPS3

product. Table 8.1 lists the range of event IDs found in each file. You will need4

to refer back to this table as you proceed.5

Table 8.1: The input files provided by for the Workbook exercises
File Name Run SubRun Range of Event Numbers
input01 data.root 1 0 1 . . . 10
input02 data.root 2 0 1 . . . 10
input03 data.root 3 0 1 . . . 5

3 1 1 . . . 5
3 2 1 . . . 5

input04 data.root 4 0 1 . . . 1000

A run-time configuration (FHiCL) file has also been provided, hello.fcl.6

8.4.2 Log In, Set Up and Execute art7

The intent of this section is for the reader to start from “zero” and execute8

an art job, without necessarily understanding each step, just to get familiar9

with the process. A detailed discussion of what these steps do will follow in10

Section 8.8.11

Some steps are written as statements, others as commands to issue at the12

prompt. Notice that art takes the argument -c hello.fcl; this points art13

to the run-time configuration file that will tell it what to do and where to find14

the “pieces” on which to operate.15

Most readers: Follow the steps in Section 8.4.2.1, then proceed directly to Sec-16

tion 8.6.17

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–3

If you wish to manage your working directory yourself, skip Section 8.4.2.1,18

follow the steps in Section 8.4.2.2, then proceed to Section 8.6.19

If you log out and wish to log back in, follow the procedure outlined in Sec-20

tion 9.6.21

8.4.2.1 Standard Procedure22

1. Log in to the computer you chose in Section 7.3.1

2. Follow the site-specific setup procedure; see Table 4.1.2

3. $ mkdir -p $ART WORKBOOK WORKING BASE/<username>/workbook-tutorial/pre-built3

In the above and elsewhere as indicated, substitute your kerberos principal4

for the string <username>.5

4. $ cd $ART WORKBOOK WORKING BASE/<username>/workbook-tutorial/pre-built6

5. $ setup toyExperiment v0 00 14 -q$ART WORKBOOK QUAL:prof7

6. $ cp $TOYEXPERIMENT DIR/HelloWorldScripts/* .8

7. $ source makeLinks.sh9

8. $ art -c hello.fcl >& output/hello.log10

Proceed to Section 8.6.11

8.4.2.2 Procedure allowing Self-managed Working Directory12

1. Log in to the computer you chose in Section 7.3.13

2. Follow the site specific setup procedure; see Table 4.114

3. Make a working directory and cd to it.15

4. setup toyExperiment v0 00 14 -q$ART WORKBOOK QUAL:prof16

5. cp $TOYEXPERIMENT DIR/HelloWorldScripts/* .17

6. Make a subdirectory named output. If you prefer you can make this18

on some other disk and put a symbolic link to it, named output, in the19

current working directory.20

7. ln -s $TOYEXPERIMENT DIR/inputFiles .21

8. art -c hello.fcl22

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–4

8.5 Logging In Again23

If you log out and later wish to log in again to work on this or any other exercise,24

you need to do the folllowing:1

1. Log in to the computer you chose in Section 7.3.2

2. Follow the site-specific setup procedure; see Section 4.3

3. $ cd $ART WORKBOOK WORKING BASE/<username>/workbook-tutorial/pre-built4

4. $ setup toyExperiment v0 00 14 -q$ART WORKBOOK QUAL:prof5

Compare this with the list given in Section 8.4.2. You will see that three steps6

are missing because they only need to be done the first time.7

You are now ready to run art as you were before.8

8.6 Examine Output9

Compare the ouptut you produced against Listing 8.1; the only differences10

should be the timestamps. It also processed the first file listed in Table 8.1.11

Listing 8.1: Sample output from running hello.fcl

112

2 %MSG-i MF_INIT_OK: art 27-Apr-2013 21:22:13 CDT JobSetup13

3 Messagelogger initialization complete.14

4 %MSG15

5 27-Apr-2013 21:22:14 CDT Initiating request to open file16

6 inputFiles/input01_data.root17

7 27-Apr-2013 21:22:14 CDT Successfully opened file18

8 inputFiles/input01_data.root19

9 Begin processing the 1st record. run: 1 subRun: 0 event: 1 at20

10 27-Apr-2013 21:22:14 CDT21

11 Hello World! This event has the id: run: 1 subRun: 0 event: 122

12 Begin processing the 2nd record. run: 1 subRun: 0 event: 2 at23

13 27-Apr-2013 21:22:14 CDT24

14 Hello World! This event has the id: run: 1 subRun: 0 event: 225

15 Hello World! This event has the id: run: 1 subRun: 0 event: 326

16 Hello World! This event has the id: run: 1 subRun: 0 event: 427

17 Hello World! This event has the id: run: 1 subRun: 0 event: 528

18 Hello World! This event has the id: run: 1 subRun: 0 event: 629

19 Hello World! This event has the id: run: 1 subRun: 0 event: 71

20 Hello World! This event has the id: run: 1 subRun: 0 event: 82

21 Hello World! This event has the id: run: 1 subRun: 0 event: 93

22 Hello World! This event has the id: run: 1 subRun: 0 event: 104

23 27-Apr-2013 21:22:14 CDT Closed file inputFiles/input01_data.root5

246
25 TrigReport ---------- Event Summary ------------7

26 TrigReport Events total = 10 passed = 10 failed = 08

279
28 TrigReport ------ Modules in End-Path: e1 ------------10

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–5

29 TrigReport Trig Bit# Visited Passed Failed Error Name11

30 TrigReport 0 0 10 10 0 0 hi12

3113

32 TimeReport ---------- Time Summary ---[sec]----14

33 TimeReport CPU = 0.004000 Real = 0.00241115

3416

35 Art has completed and will exit with status 0.17

Every time you run art , the first thing to check is the last line in your out-18

put or log file. It should be Art has completed and will exit with19

status 0. If the status is not 0, or if this line is missing, it is an error; please20

contact the art team as described in Section 2.4.21

A future version of these instructions will specify how much disk space is needed,22

including space for all ouptut files.23

8.7 Understanding the Configuration File hello.fcl24

The file hello.fcl gives art its run-time configuration. This file is writ-25

ten in the Fermilab Hierarchical Configuration Language (FHiCL, pronounced26

“fickle”), a language that was developed at Fermilab to support run-time config-27

uration for several projects, including art . By convention, files written in FHiCL28

end in .fcl. As you work through the Workbook, the features of FHiCL that29

are relevant for each exericse will be explained.30

The full details of the FHiCL language, plus the details of how it is used by art ,31

are given in the Users Guide, Chapter 23. Most people will find it much easier32

to follow the discussion in the Workbook documentation than to digest the full33

documentation up front.34

8.7.1 Some Bookkeeping Syntax35

In a FHiCL file, the start of a comment is marked by the hash sign character36

(#); a comment may begin in any column.37

The hash sign has one other use, however. If the first eight characters of a line38

are exactly #include, followed by whitespace and a quoted list of file paths,39

then the line will be interpreted as an include directive and the line containing it40

will be replaced by the contents of the file named in the include directive.41

The basic element of FHiCL is the definition, which has the form1

name : value2

A group of FHiCL definitions delimited by braces {} is called a table(γ). Within3

art , a FHiCL table gets turned into a C++ object called a parameter set(γ);4

this document set will often refer to a FHiCL table as a parameter set.5

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–6

The fragment of hello.fcl shown in Listing 8.2 contains the FHiCL table that6

configures the source(γ) of events that art will read in and operate on.7

Listing 8.2: The source parameter set from hello.fcl

1 source : {8

2 module_type : RootInput9

3 fileNames : ["inputFiles/input01_data.root"]10

4 }11

The name source is a keyword in art ; i.e., the name source has no special12

meaning to FHiCL but it does have a special meaning to art . To be precise, it13

only has a special meaning to art if it is at the outermost scope(γ) of a FHiCL14

file; i.e., not inside any braces {} within the file. The notion of scope in FHiCL is15

discussed further in Chapter 11. When art sees a parameter set named source16

at the outermost scope, then art will interpret that parameter set to be the17

description of the source of events for this run of art .18

In the source parameter set, the identifier module type is a keyword in art19

that tells art the name of a module that it should load and run, RootInput in20

this case. RootInput is one of the standard source modules provided by art21

and it reads disk files containing event-data written in an art-defined ROOT-22

based format. The default behaviour of the RootInput module is to start at23

the first event in the first file and read to the end of the last event in the last24

file.125

The identifier fileNames is again a keyword, but this time defined in the26

RootInput module, that gives the module a list of filenames from which to read27

events. The list is delimited by square brackets and contains a comma-separated28

list of filenames. This example shows only one filename, but the square brackets29

are still required. The proper FHiCL name for a comma-separated list delimited30

by square brackets is a sequence(γ).31

In most cases the filenames in the sequence must be enclosed in quotes. FHiCL,32

like many other languages has the following rule: if a string contains white33

space or any special characters, then quoting it is required, otherwise quotes are34

optional.35

FHiCL has its own set of special characters; these include anything except all36

upper and lower case letters, the numbers 0 through 9 and the underscore char-37

acter. art restricts the use of the underscore character in some circumstances;1

these will be discussed as they arise.2

It is implied in the foregoing discussion that a FHiCL value need not be a3

simple thing, such as a number or a quoted string. For example, in Listing 8.2,4

1 In the Workbook, the only source module type that you will see will be RootInput.
Your experiment may have a source module that reads events from the live experiment and
other source modules that read files written in experiment-defined formats; for example Mu2e
has a source module that reads single particle events from a text file written by G4beamline
.

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–7

the source value is a parameter set (of two parameters) and the value of5

fileNames is a (single-item) sequence.6

8.7.2 Some Physics Processing Syntax7

The identifier physics(γ), when found at the outermost scope, is a keyword in8

art . The physics parameter set is so named because it contains most of the9

information needed to describe the physics workflow of an art job.10

The fragment of hello.fcl shown in Listing 8.3 shows a rather long-winded11

way of telling art to find a module named HelloWorld and execute it.12

Listing 8.3: The physics parameter set from hello.fcl

1 physics :{13

2 analyzers: {14

3 hi : {15

4 module_type : HelloWorld16

5 }17

6 }18

7 e1 : [hi]19

8 end_paths : [e1]20

9 }21

Why so long-winded? art has very powerful features that enable execution22

of multiple complex chains of modules; the price is that specifying something23

simple takes a lot of keystrokes.24

Within the physics parameter set, notice the identifier analyzers. When25

found as a top-level identifier within the physics scope, it is recognized as a26

keyword in art . The analyzers parameter set defines the run-time configura-27

tion for all of the analyzer modules that are part of the job – only HelloWorld28

in this case.29

For our current purposes, the module HelloWorld does only one thing of30

interest, namely for every event it prints one line:31

Hello World! This event has the id: run: <RR> subRun: <SS> event: <EE>32

where RR, SS and EE are substituted with the actual run, subRun and event33

number of each event.34

If you look back at Listing 8.1, you will see that this line appears ten times,35

once each for events 1 through 10 of run 1, subRun 0 (as expected, according36

to Table 8.1). The remainder of the listing is standard output generated by37

art .1

Listing 8.4 shows the remainder of the lines in hello.fcl. The line starting2

with process name(γ) tells art that this job has a name and that the name3

is “hello”; it has no real significance in these simple exericses. It becomes4

important when an art job creates new data products (described in User Guide5

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–8

Chapter 24) and writes them to a file; each data product will be uniquely6

identified by a four-part name, one part of which is the name of the process7

that created the data product. This imposes a constraint on process name8

values: art joins the four parts of a data product name into a single string, with9

the underscore () as a separator between fields; none of the parts (e.g., the10

process name) may contain additional underscores.11

In an art event-data file, each data product is stored as a TBranch of a TTree(γ);12

the string containing the full name of the data product is used as the name of13

the TBranch. On readback, art must parse the name of the TBranch to recover14

the four individual pieces of the data product name. If one of the four parts15

internally contains an underscore, then art cannot reliably recover the four16

parts.17

Listing 8.4: The remainder of hello.fcl

1 #include "fcl/minimalMessageService.fcl"18

219

3 process_name : hello20

421

5 services : {22

6 message : @local::default_message23

7 }24

Listing 8.4 also contains the services parameter set, which provides run-25

time configuration information for all art services. For our present purposes,26

it is sufficient to know that the configuration for the message service is found27

inside the file that is included via the #include line. The message service28

controls the limiting and routing of debug, informational, warning and error29

messages generated by art or by user code. The message service does not control30

information written directly to std::cout or std::cerr.31

8.7.3 Command line Options32

art supports some command line options. To see what they are, type the fol-33

lowing command at the bash prompt34

$ art --help35

Note that some options have both a short form and a long form. This is a com-36

mon convention for Unix programs; the short form is convenient for interacive37

use and the long form makes scripts more readable.38

8.7.4 Maximum Number of Events to Process1

By default art will read all events from all of the specified input files. You can2

set a maximum number of events in two ways, one way is from the command3

line:4

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–9

$ art -c hello.fcl -n 55

$ art -c hello.fcl --nevts 46

Run each of these commands and observe their output.7

The second way is within the FHiCL file. Start by making a copy of hello.fcl:8

$ cp hello.fcl hi.fcl9

Edit hi.fcl and add the following line anywhere in the source parameter10

set:11

maxEvents : 312

By convention this is added after the fileNames definition but it can go anywhere13

inside the source parameter set because the order of parameters within a FHiCL14

table is not important. Run art again, using hi.fcl:15

$ art -c hi.fcl16

You should see output from the HelloWorld module for only the first three17

events.18

To configure the file for art to process all the events, i.e., to run until art reaches19

the end of the input files, either leave off the maxEvents parameter or give it20

a value of -1.21

If the maximum number of events is specified both on the command line and in22

the FHiCL file, then the command line takes precedence. Compare the outputs23

of the following commands:24

$ art -c hi.fcl25

$ art -c hi.fcl -n 526

$ art -c hi.fcl -n -127

8.7.5 Changing the Input Files28

For historical reasons, there are multiple ways to specify the input event-data29

file (or the list of input files) to an art job:30

• within the FHiCL file’s source parameter set31

• on the art command line via the -s option (you may specify one input32

file only)33

• on the art command line via the -S option (you may specify a text file34

that lists multiple input files)35

• on the art command line, after the last recognized option (you may specify36

one or more input files)37

If input file names are provided both in the FHiCL file and on the command1

line, the command line takes precedence.2

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–10

Let’s run a few examples.3

We’ll start with the -s command line option (second bullet). Run art without4

it (again), for comparison (or recall its output from Table 8.1):5

$ art -c hello.fcl6

To see what you should expect given the following input file, check Table 8.1,7

then run:8

$ art -c hello.fcl -s inputFiles/input02_data.root9

Notice that the 10 events in this output are from run 2 subRun 0, in contrast10

to the previous printout which showed events from run 1. Notice also that the11

command line specification overrode that in the FHiCL file. The -s (lower case)12

command line syntax will only permit you to specify a single filename.13

This time, edit the source parameter set inside the hi.fcl file (first bullet);14

change it to:15

source : {16

module_type : RootInput17

fileNames : ["inputFiles/input01_data.root",18

"inputFiles/input02_data.root"]19

maxEvents : -120

}21

(Notice that you also added maxEvents : -1.) The names of the two in-22

put files could have been written on a single line but this example shows that23

newlines are treated simply as white space.24

Check Table 8.1 to see what you should expect, then rerun art as follows:25

$ art -c hi.fcl26

You will see 20 lines from the HelloWorld module; you will also see messages27

from art at the open and close operations on each input file.28

Back to the -s command-line option, run:29

$ art -c hi.fcl -s inputFiles/input03_data.root30

This will read only inputFiles/input03 data.root and will ignore the31

two files specified in the hi.fcl. The output from the HelloWorld module32

will be the 15 events from the 3 subRuns of run 3.33

There are several ways to specify multiple files at the command line. One choice34

is to use the -S (upper case) [--source-list] command line option (third1

bullet) which takes as its argument the name of a text file containing the ROOT2

input filename(s), e.g., inputs.txt.3

%$ ls inputFiles/*.root | head -3 > inputs.txt4

$ cat inputs.txt5

$ art -c hi.fcl -S inputs.txt6

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–11

The first command shows you the filenameslisted in the input file. After the art7

command, you should see the HelloWorld output from 35 events in the three8

files.9

Finally, you can list the files at the end of the command (fourth bullet), either10

file-by-file or via a text-file listing of them. .11

$ art -c hi.fcl inputs.txt12

When art processes its command line options, any strings that follow the last13

recognized option are presumed to be the names of input files. art will form an14

input file list from these filenames. For example15

$ art -c hi.fcl inputFiles/input02_data.root inputFiles/input03_data.root16

will make the HelloWorld printout for input files 02 and 03.17

It is recommended that, within a single art job, you pick one way of specifying18

multiple files. It is possible, but needlessly confusing and error-prone, to simul-19

taneously use all of the command line methods (any of which will trump the20

FHiCL file contents).21

8.7.6 Skipping Events22

The source parameter set supports a syntax to start execution at a given event23

number or to skip a given number of events at the start of the job. Look, for24

example, at the file skipEvents.fcl, which differs from hello.fcl by the25

addition of two lines to the source parameter set:26

firstEvent : 527

maxEvents : 328

art will process events 5, 6, and 7 of run 1, subRun 0. Try it:29

$ art -c skipEvents.fcl30

An equivalent operation can be done from the command line in two different31

ways. Try the following two commands and compare the output:32

$ art -c hello.fcl -e 5 -n 333

$ art -c hello.fcl --nskip 4 -n 334

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–12

You can also specify the intial event to process relative to a given event ID35

(which, recall, contains the run, subRun and event number). Edit hi.fcl and36

edit the source parameter set as follows:37

source : {38

module_type : RootInput1

fileNames : [‘‘inputFiles/input03_data.root’’]2

firstRun : 33

firstSubRun : 14

firstEvent : 65

}6

When you run this job, art will process events starting from run 3, subRun 2,7

event 1, – because there are only 5 events in subRun 1.8

$ art -c hi.fcl9

8.7.7 Identifying the User Code to Execute10

Recall from Section 8.7.2 that the physics parameter set contains the physics11

content for the art job. Within this parameter set, art must be able to determine12

which (user code) modules to process. These must be referenced via module13

labels(γ), which as you will see, represent the pairing of a module name and a14

run-time configuration.15

Look back at Listing 8.3, which contains the physics parameter set from16

hello.fcl. The analyzer parameter set, nested inside the physics pa-17

rameter set, contains the definition:18

hi : {19

module_type : HelloWorld20

}21

The identifier hi is a module label (defined by the user, not by FHiCL or art)22

whose value must be a parameter set that art will use to configure a module.23

The parameter set for a module label must contain (at least) a FHiCL definition24

of the form:25

module_type : <module-name>26

Here module type is a keyword in art and <module-name> tells art the27

name of the module to load and execute. (Since it is within the analyzer28

parameter set, the module must be of type EDAnalyzer; i.e. the base type of29

<module-name> must be EDAnalyzer.)30

Module labels are fully described in Section 23.5.31

In this example art will look for a module named HelloWorld, which it will1

find as part of the toyExperiment UPS product. Section 8.9 describes how art2

uses <module-name> to find the shareable library that contains code for the3

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–13

HelloWorld module. A parameter set that is used to configure a module may4

contain additional lines; if present, the meaning of those lines is understood by5

the module itself; those lines have no meaning either to art or to FHiCL.6

Now look at the FHiCL fragment in Listing 8.5. We will use it to reinforce some7

of the ideas discussed in the previous paragraph.8

art allows you to write a FHiCL file that uses a given module more than once.9

For example you may want to run an analysis twice, once with a loose mass10

cut on some intermediate state and once with a tight mass cut on the same11

intermediate state. In art you can do this by writing one module and mak-12

ing the cuts “run-time configurable.” This idea will be developed further in13

Chapter 12.14

Listing 8.5: A FHiCL fragment illustrating module labels
1 analyzers : {15

2 loose : {16

3 module_type : MyAnalysis17

4 mass_cut : 20.18

5 }19

6 tight : {20

7 module_type : MyAnalysis21

8 mass_cut : 15.22

9 }23

10 }24

When art processes this fragment it will look for a module named MyAnalysis25

and instantiate it twice, once using the parameter set labeled (i.e. with mod-26

ule label) tight and once using the parameter set labeled loose. The two27

instances of the module MyAnalysis are distinguished by the module labels28

tight and loose.29

art requires that module labels be unique within a FHiCL file. Module label30

may contain only upper- and lower-case letters and the numerals 0 to 9.31

In the FHiCL files in this exercise, all of the modules are analyzer modules. Since32

analyzers do not make data products, these module labels are nothing more33

than identifiers inside the FHiCL file. For producer modules, however, which34

do make data products, the module label becomes part of the data product35

identifier and as such has a real signficance. All module labels must conform to36

the same naming rules.37

Within art there is no notion of reserved names or special names for module38

labels; however your experiment will almost certainly have established some1

naming conventions.2

8.7.8 Paths3

In the physics parameter set for hello.fcl there are two parameters that4

represent paths (discussed in Section 3.6 :5

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–14

e1 : [hi]6

end_paths : [e1]7

The path defined by the parameter e1 takes a value that is a FHiCL sequence8

of module labels. The name of a path is an arbitrary identifier that must be9

unique within a FHiCL file; it has no persistent signficance and can be any legal10

FHiCL name.11

Sometimes this documentation uses the word path in the sense of an art path(γ)12

(a sequence of module labels), other times path is used as a path in a file system13

and in yet other situations, it is used as a colon-delimited set of directory names.14

The use should be clear from the context.15

The name end paths, in contrast to e1, is a keyword in art . Its value must be16

a FHiCL sequence of paths – here it is a sequence of one path, e1. reference the17

rules when available When art processes the end paths definition it combines18

all of the path definitions and forms the set of unique module labels from all19

paths defined in the parameter set . In other words, it is legal in art for a20

module label to appear in more than one path; if it does, art will recognize this21

and will ensure that the module is executed only once per event.22

If you put the name of a module label into the definition of end paths, art23

will issue an error and stop processing.24

The paths listed in end paths may only contain module labels for analyzer25

and/or output modules; they may not contain module labels for producer or fil-26

ter modules. The reason for this restriction will be discussed in Section .27

What about the order of module labels in a path? Since analyzer and output28

modules may neither add new information to the event nor communicate with29

each other except via the event, the processing order is not important for the30

event. By definition, then, art may run analyzer and output modules in any31

order. In a simple art job with a single path, art will, in fact, run the modules32

in the order of appearance in the path, but do not write code that depends on33

execution order because art is free to change it.34

It may seem that end paths could more simply have been defined as a set of35

module labels, eliminating the layer of the path altogether, but there is a reason.36

We will defer this discussion to Section .37

If the end paths parameter is absent or defined as:38

end_paths : []39

art will understand that this job has no analyzer modules and no filter modules40

to execute. It is legal to define a path as an empty FHiCL sequence.1

As is standard in FHiCL, if the definition of end paths appears more than2

once, the last definition takes precendence.3

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–15

8.7.9 Writing an Output File4

The file writeFile.fcl gives an example of writing an output file. This file5

introduces the parameter set named outputs:6

outputs : {7

output1 : {8

module_type : RootOutput9

fileName : "output/writeFile_data.root"10

}11

}12

When it appears at the outermost scope of a FHiCL file, the identifier outputs13

is a keyword reserved to art . In this case the value of outputs must be a param-14

eter set (e.g., output1) of parameter sets (e.g., module type and fileName);15

each of the inner parameter sets provides the configuration of one output mod-16

ule.17

An art job may have zero or more output modules.18

The name RootOutput is the name of a standard art output module; it writes19

the events in memory to a disk file in an art-defined, ROOT-based format. Files20

written by the module RootOutput can be read by the module RootInput.21

The identifier output1 is just another module label that obeys the same rules22

discussed in Section 8.7.7. The identifier fileName is a keyword known to the23

RootOutput module; its value is the name of the output file that this instance24

of RootOutput will write.25

There are many more optional parameters that can be used to configure an26

output module. For example, an output module can be configured to write27

out only selected events and/or to write out only a subset of the available data28

products. Optional parameters are described in Chapter .29

Notice in writeFile.fcl that the path e1 has been extended to include the30

module label of the output module:31

e1 : [hi, output1]32

Finally, the source parameter set of writeFile.fcl is configured to read only33

events 4, 5, 6, and 7.34

To run writeFile.fcl and check that it worked correctly:35

$ art -c writeFile.fcl36

$ ls -s output/writeFile_data.root37

$ art -c hello.fcl -s output/writeFile_data.root38

The first command will write the ouptut file; the second will check the size of1

the output file and the last one will read back the output file and print the event2

IDs for all of the events in the file. You should see the HelloWorld printout3

for events 4, 5, 6 and 7.4

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–16

8.8 Understanding the Process for Exercise 15

Section 8.4.2 contained a list of steps needed to run this exercise; this section6

will describe each of those steps in detail. When you understand what is done7

in these steps, you will understand the run-time environment in which art runs.8

As a reminder, the steps are listed again here:9

1. Log in to the computer you chose in Section 7.3.10

2. Follow the site-specific setup procedure; see Chapter 411

3. mkdir -p $ART WORKBOOK WORKING BASE/<username>/workbook-tutorial/pre-built12

In the above and elsewhere as indicated, substitute your kerberos principal13

for the string <username>.14

4. cd $ART WORKBOOK WORKING BASE/<username>/workbook-tutorial/pre-built15

5. setup toyExperiment v0 00 14 -q$ART WORKBOOK QUAL:prof16

6. cp $TOYEXPERIMENT DIR/HelloWorldScripts/* .17

7. source makeLinks.sh18

8. Run art :19

art -c hello.fcl >& output/hello.log20

Steps 1 and 4 should be self explanatory and will not be discussed further.21

When reading this section, you do not need to run any of the commands given22

here; this is a commentary on commands that you have already run.23

8.8.1 Follow the Site-Specific Setup Procedure (Details)24

The site-specific startup procedure, described in Chapter 4, ensures that the25

UPS system is properly initialized and that the UPS database (containing all26

of the UPS products needed to run the Workbook exercises) is present in the27

PRODUCTS environment variable.28

This procedure also defines two environment variables that are defined by your29

experiment to allow you to run the Workbook exercises on their computer(s):30

ART WORKBOOK WORKING BASE the top-level directory in which31

users create their working directory for the Workbook exercises32

ART WORKBOOK OUTPUT BASE the top-level directory in which users33

create their output directory for the Workbook exercises; this is used by34

the script makeLinks.sh35

If these environment variables are not defined, ask a system admin on your36

experiment.37

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–17

8.8.2 Make a Working Directory (Details)38

On the Fermilab computers the home disk areas are quite small so most ex-39

periments ask that their collaborators work in some other disk space. This is1

common to sites in general, so we recommend working in a separate space as a2

best practice. The Workbook is designed to require it.3

This step given as:4

$ mkdir -p $ART_WORKBOOK_WORKING_BASE/<username>/workbook-tutorial/pre-built5

creates a new directory to use as your working directory. It is defined relative6

to an environment variable described in Section 8.8.1. It only needs to be done7

the first time that you log in to work on Workbook exercises – once it’s there,8

it’s there!9

If you follow the rest of the naming scheme, you will guarantee that you have10

no conflicts with other parts of the Workbook.11

As discussed in Section 8.4.2.2, you may of course choose your own working12

directory on any disk that has adequate disk space.13

8.8.3 Setup the toyExperiment UPS Product (Details)14

This step is the main event in the eight-step process.15

$ setup toyExperiment v0_00_14 -q$ART_WORKBOOK_QUAL:prof16

This command tells UPS to find a product named toyExperiment, with the17

specified version and qualifiers, and to setup that product, as described in Sec-18

tion 6.3.19

The required qualifiers may change from one experiment to another and even20

from one site to another within the same experiment. To deal with this, the site21

specific setup procedure defines the environment variable ART WORKBOOK QUAL,22

whose value is the qualifier string that is correct for that site.23

The complete ups qualifier for toyExperiment has two components, separated by24

a colon: the string defined by ART WORKBOOK QUAL plus a qualifier describing25

the compiler optimization level with which the product was built, in this case26

“prof”; see Section 2.6.7 for information about the optimization levels.27

Each version of the toyExperiment product knows that it requires a particular28

version and qualifier of the art product. In turn, art knows that it depends29

on particular versions of ROOT, CLHEP, boost and so on. When this recur-30

sive setup has completed, over 20 products will have been setup. All of these31

products define environment variables and about two-thirds of them add new32

elements to the environment variables PATH and LD LIBRARY PATH.33

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–18

If you are interested, you can inspect your environment before and after doing1

this setup. To do this, log out and log in again. Before doing the setup, run the2

following commands:3

$ printenv > env.before4

$ printenv PATH | tr : \\n > path.before5

$ printenv LD_LIBRARY_PATH | tr : \\n > ldpath.before6

Then setup toyExperiment and capture the environment afterwards (env.after).7

Compare the before and after files: the after files will have many, many additions8

to the environment.9

8.8.4 Copy Files to your Current Working Directory (De-10

tails)11

The step:12

$ cp $TOYEXPERIMENT_DIR/HelloWorldScripts/* .13

only needs to be done only the first time that you log in to work on the Work-14

book.15

In this step you copied the files that you will use for the exercises into your16

current working directory. You should see these files:17

hello.fcl makeLinks.sh skipEvents.fcl writeFile.fcl18

8.8.5 Source makeLinks.sh (Details)19

This step:20

$ source makeLinks.sh21

only needs to be done only the first time that you log in to work on the Work-22

book. It created some symbolic links that art will use.23

The FHiCL files used in the Workbook exercises look for their input files in the24

subdirectory inputFiles. This script made a symbolic link, named inputFiles,25

that points to:26

$TOYEXPERIMENT_DIR/inputFiles27

in which the necessary input files are found.28

This script also ensures that there is an output directory that you can write29

into when you run the exercises and adds a symbolic link from the current30

working directory to this output directory. The output directory is made under31

the directory $ART WORKB0OK OUTPUT BASE; this environment variable was32

set by the site-specific setup procedure and it points to disk space that will have33

enough room to hold the output of the exercises.34

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–19

8.8.6 Run art (Details)35

Issuing the command:36

$ art -c hello.fcl1

runs the art main program, which is found in $ART FQ DIR/bin. This direc-2

tory was added to your PATH when you setup toyExperiment. You can inspect3

your PATH to see that this directory is indeed there.4

8.9 How does art find Modules?5

When you ran hello.fcl, how did art find the module HelloWorld?6

It looked at the environment variable LD LIBRARY PATH, which is a colon-7

delimited set of directory names defined when you setup the toyExperiments8

product. We saw the value of LD LIBRARY PATH in Section 8.8.3; to see it9

again, type the following:10

$ printenv LD_LIBRARY_PATH | tr : \\n11

(The fragment | tr : \\n tells the bash shell to take the output of print-12

env and replace every occurrence of the colon character with the newline charac-13

ter; this makes the output much easier to read.) The output should look similar14

to that shown in Listing 8.6.15

Listing 8.6: Example of the value of LD LIBRARY PATH

1 /ds50/app/products/tbb/v4_1_2/Linux64bit+2.6-2.12-e2-prof/lib16

2 /ds50/app/products/sqlite/v3_07_16_00/Linux64bit+2.6-2.12-prof/lib17

3 /ds50/app/products/libsigcpp/v2_2_10/Linux64bit+2.6-2.12-e2-prof/lib18

4 /ds50/app/products/cppunit/v1_12_1/Linux64bit+2.6-2.12-e2-prof/lib19

5 /ds50/app/products/clhep/v2_1_3_1/Linux64bit+2.6-2.12-e2-prof/lib20

6 /ds50/app/products/python/v2_7_3/Linux64bit+2.6-2.12-gcc47/lib21

7 /ds50/app/products/libxml2/v2_8_0/Linux64bit+2.6-2.12-gcc47-prof/lib22

8 /ds50/app/products/fftw/v3_3_2/Linux64bit+2.6-2.12-gcc47-prof/lib23

9 /ds50/app/products/root/v5_34_05/Linux64bit+2.6-2.12-e2-prof/lib24

10 /ds50/app/products/boost/v1_53_0/Linux64bit+2.6-2.12-e2-prof/lib25

11 /ds50/app/products/cpp0x/v1_03_15/slf6.x86_64.e2.prof/lib26

12 /ds50/app/products/cetlib/v1_03_15/slf6.x86_64.e2.prof/lib227

13 /ds50/app/products/fhiclcpp/v2_17_02/slf6.x86_64.e2.prof/lib28

14 /ds50/app/products/messagefacility/v1_10_16/slf6.x86_64.e2.prof/lib29

15 /ds50/app/products/art/v1_06_00/slf6.x86_64.e2.prof/lib30

16 /ds50/app/products/toyExperiment/v0_00_14/slf6.x86_64.e2.prof/lib31

17 /grid/fermiapp/products/common/prd/git/v1_8_0_1/Linux64bit-2/lib32

Of course the leading element of each directory name, /ds50/app will be33

replaced by whatever is correct for your experiment. The last element in34

LD LIBRARY PATH is not relevant for running art and it may or may not1

be present on your machine, depending on details of what is done inside your2

site-specific setup procedure.3

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–20

If you compare the names of the directories listed in LD LIBRARY PATH to the4

names of the directories listed in the PRODUCTS environment variable, you will5

see that all of these directories are part of the UPS products system. Moreover,6

for each product, the version, flavor and qualifiers are embedded in the directory7

name. In particular, both art and toyExperiment are found in the list.8

If you ls the directories in LD LIBRARY PATH you will find that each directory9

contains many shareable object libraries (.so files).10

When art looks for a module named HelloWorld, it looks through the directe-11

ories defined in LD LIBRARY PATH and looks for a file whose name matches12

the pattern,13

lib*HelloWorld_module.so14

where the asterisk matches (zero or) any combination of characters. art finds15

that, in all of the directories, there is exactly one file that matches the pattern,16

and it is found in the directory:17

/ds50/app/products/toyExperiment/v0_00_14/slf6.x86_64.e2.prof/lib/18

The name of the file is:19

libtoyExperiment_Analyzers_HelloWorld_module.so20

If art had found no files that matched the pattern, it would have printed an21

error message and tried to shutdown as gracefully as possible. If art had found22

more than one file that matched the pattern, it would have printed a different23

error message and tried to shut down as gracefully as possible.24

One of the important features of art is that, whenever it detects an error condi-25

tion that is serious enough to stop execution, it always attempts to shut down as26

gracefully as possible. Among other things this means that it tries to properly27

close all output files. This feature is not so important when an error occurs28

at the start of a job but it ensures that, when an error occurs after hours of29

execution, your results up to the error are correct and available.30

8.10 The art Run-time Environment31

This discussion is aimed to help you understand the process described in this32

chapter as a whole and how the pieces fit together in the art run-time environ-33

ment. This evironment is summarized in Figure 8.1. In this figure the boxes34

refer either to locations in memory or to files on a disk.35

At the center of the figure is a box labelled “art executable;” this represents36

the art main program resident in memory after being loaded. When the art37

executable starts up, it reads its run-time configuration (FHiCL) file, repre-38

sented by the box to its left. Following instructions from the configuration39

file, art will load shared libraries from toyExperiment, from art , from ROOT,1

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–21

Figure 8.1: Elements of the art run-time environment for the first Workbook
exercise

from CLHEP and from other UPS products. All of these shared librares (.so2

files) will be found in the appropriate UPS products in LD LIBRARY PATH,3

which points to directories in the UPS products area (box at upper right). Also4

following instructions from the FHiCL file, art will look for input files (box la-5

beled “Event-data input files” at right). The FHiCL file will tell art to write6

its event-data and histogram output files to a particular directory (box at lower7

right).8

One remaining box in the figure (at right, second from bottom) is not encoun-9

tered in the first Workbook exercise but has been provided for completeness. In10

most art jobs it is necessary to access experiment-related geometry and condi-11

tions information; in a mature experiment, these are usually stored in a database12

that stands apart from the other elements in the picture.13

The arrows in Figure 8.1 show the direction in which information flows. Every-14

thing but the output flows into the art executable.15

8.11 Finding FHiCL files: FHICL FILE PATH16

This section will describe where art looks for FHiCL files. There are two cases:17

looking for the file specified by the command line argument -c and looking18

for files that have been included by a #include directive within a FHiCL19

file.20

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–22

8.11.1 The -c command line argument21

When you issued the command22

$ art -c hello.fcl23

art looked for a file named hello.fcl in the current working directory and24

found it. You may specify any absolute or relative path as the argument of25

the -c option. If art had not found hello.fcl in this directory it would26

have looked for it relative to the path defined by the environment variable27

FHICL FILE PATH. This is just another path-type environment variable, like28

PATH or LD LIBRARY PATH. You can inspect the value of FHICL FILE PATH29

by:30

$ printenv FHICL_FILE_PATH31

.:$TOYEXPERIMENT_DIR32

Acutally the output will show the translated value of the environment variable33

TOYEXPERIMENT DIR. The presence of the current working directory (dot) in34

the path is redundant when processing the command line argument but it is35

significant in the case discussed in the next section.36

Some experiments have chosen to configure their version of the art main pro-37

gram so that it will not look for the command line argument FHiCL file in1

FHICL FILE PATH. It is also possible to configure art so that only relative2

paths, not absolute paths, are legal values of the -c argument. This last op-3

tion can be used to help ensure that only version-controlled files are used when4

running production jobs. Experiments may enable or disable either of these5

options when their main program is built.6

8.11.2 #include Files7

Section 8.7 discussed Listing 8.4, which contains the fragments of hello.fcl8

that are related to configuring the message service. The first line in that listing9

is an include directive. art will look for the file named by the include directive10

relative to FHICL FILE PATH and it will find it in:11

$TOYEXPERIMENT_DIR/fcl/minimalMessageService.fcl12

This is part of the toyExperiment UPS product.13

The version of art used in the Workbook does not consider the argument of the14

include directive as an absolute path or as a path relative to the current working15

directory; it only looks for files relative to FHICL FILE PATH. This is in contrast16

to the choice made when processing the -c command line option.17

When building art , one may configure art to first consider the argument of18

the include directive as a path and to consider FHICL FILE PATH only if that19

fails.20

art Documentation

Chapter 8: Exercise 1: Run Pre-built art Modules 8–23

Add a section called Review that looks at trigger paths, end paths, etc and works1

backwards2

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–1

9 Exercise 2: Build and Run Your First3

Module4

9.1 Introduction5

In this exercise you will build and run a simple art module. Section 2.6.76

introduced the idea of a build system, a software package that compiles and links7

your source code to turn it into machine code that the computer can execute. In8

this chapter you will be introduced to the art development environment, which9

adds to the run-time environment (discussed in Section 8.10)10

1. a build system11

2. a source code repository12

3. a working copy of the Workbook source code13

4. a directory containing shared libraries created by the build system14

In this and all subsequent Workbook exercises, you will use the build system15

used by the art development team, cetbuildtools. This system will require16

you to open two shell windows your local machine and, in each one, to log into17

the remote machine 1. The windows will be referred to as the source window18

and the build window :19

• In the source window you will check out and edit source code.20

• In the build window you will build and run code.21

Exercise 2 and all subsequent Workbook exercises will use the setup instructions22

found in this chapter.23

Most readers: Follow the setup steps in Section 9.4.1, and skip Section 9.5.24

If you are an advanced user and wish to manage your working directory your-25

self, skip Section 9.4.1, and follow the steps in Section 9.5, then go back to26

Section 9.4.2 and 9.4.4 to examine the directories’ contents.27

1cetbuildtools requires what are called out-of-source builds; this means that the source
code and the working space for the build system must be in separate directories.

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–2

9.2 Prerequisites28

Before running this exercise, you need to be familiar with the material in Part29

I (Introduction) of this documentation set and Chapter 8 from Part II (Work-30

book).31

• namespace32

• #include directives33

• header file34

• class35

• base class1

• derived class2

• constructor3

• destructor4

• what does the compiler do if you do not provide a destructor?5

• the C preprocessor1

• member function (aka method)2

• const vs non-const member function3

• argument list of a function4

• signature of a function5

• virtual function6

• pure virtual function7

• virtual class8

• pure virtual class9

• concrete class10

• declaration vs defintion of a class11

• arguments passed by reference12

• arguments passed by const reference13

• notion of type: e.g., a class, a struct, a free function or a typedef14

• how to write a C++ main program15

In this chapter you will also encounter the C++ idea of inheritance. Under-16

standing inheritance is not a prerequisite; it will be described as you encounter17

it in the Workbook exercises.18

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–3

9.3 What You Will Learn19

In this exercise you will learn:20

• how to establish the art development environment21

• how to checkout the Workbook exercises from the git source code man-22

agement system23

• how to use the cetbuildtools build system to build the code for the24

Workbook exercises25

• how include files are found1

• what a link list is2

• where the build system finds the link list3

• what the art::Event is and how to access it4

• what the art::EventID is and how to access it5

• what makes a class an art module6

• where the build system puts the .so files that it makes7

9.4 Setting up to Run Exercises: Standard Pro-8

cedure9

9.4.1 “Source Window” Setup10

In your source window do the following:11

1. Log in to the computer you chose in Section 7.3.12

2. Follow the site-specific setup procedure; see Table 4.113

3. $ mkdir -p $ART WORKBOOK WORKING BASE/<username>/workbook14

In the above and elsewhere as indicated, substitute your kerberos principal15

for the string <username>.16

4. $ cd $ART WORKBOOK WORKING BASE/<username>/workbook17

5. Set up the source code management system git; check the output for18

each step in Section 9.4.2.1:19

(a) $ setup git20

(b) $ git clone http://cdcvs.fnal.gov/projects/art-workbook21

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–4

(c) $ cd art-workbook22

This will be referred to as your source directory.23

(d) $ git checkout -b v0 00 13 v0 00 1324

6. $ source ups/setup deps -p $ART WORKBOOOK QUAL25

Up through step 4, the results should look similar to those of Exercise 1. Note26

that the directory name chosen here is different than that chosen in the first27

exercise; this is to avoid file name collisions.28

9.4.2 Examine Source Window Setup29

9.4.2.1 About git and What it Did1

git is a source code management system2 that is used to hold the source code2

for the Workbook exercises. A source code managment system is a tool that3

helps to look after the bookkeeping of the development of a code base; among4

many other things it keeps a complete history of all changes and allows one to5

get a copy of the source code as it existed at some time in the past. Because6

of git’s many advanced features, many HEP experiments are moving to git.7

git is fully described in the git manual .8

Some experiments set up git in their site-specific setup procedure; others do9

not. In running setup git, you have ensured that a working copy of git is10

in your PATH3.11

The git clone and git checkout commands produce a working copy of12

the Workbook source files in your source directory; git clone should produce13

the following output:14

Cloning into ’art-workbook’...15

Executing the git checkout command should produce the following out-16

put:17

Switched to a new branch ’v0 00 13 ’18

If you do not see the expected output, contact the art team as described in19

Section 2.4. If you wish to learn about git branches, consult a git manual.20

The final step sources a script that defines a lot of environment variables (the21

same set that will be defined in the build window).22

2Other source code management systems with which you may be familar are cvs and svn.
3No version needs to be supplied because the git UPS product has a current version

declared; see Section 6.4.

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–5

9.4.2.2 Contents of the Source Directory23

At the end of the setup procedure, see what your source directory contains:24

$ cd $ART_WORKBOOK_WORKING_BASE/<username>/workbook/art-workbook25

$ ls26

admin art-workbook CMakeLists.txt ups27

(Yes, it contains a subdirectory of the same name as its parent, art-workbook.)28

• The admin directory contains some scripts used by cetbuildtools to1

customize the configuration of the development environment.2

• The art-worbook directory contains the main body of the source code.3

• The file CMakeLists.txt is the file that the build system reads to learn4

what steps it should do.5

• The ups directory contains information about what UPS products this6

product depends on; it contains additional information used to configure7

the development environment.8

Look inside the art-workbook (“junior”) directory (via ls) and see that it9

contains several files and subdirectories. The file CMakeLists.txt contains10

more instructions for the build system. Actually every directory contains a11

CMakeLists.txt; each contains additional instructions for the build system.12

The subdirectory FirstModule contains the files that will be used in this ex-13

ericse; the remaining subdirectories contain files that will be used in subsequent14

Workbook exercises.15

If you look inside the FirstModule directory, you will see16

CMakeLists.txt FirstAnswer01_module.cc First_module.cc17

firstAnswer01.fcl first.fcl18

The file CMakeLists.txt in here contains yet more instructions for the build19

system and will be discussed later. The file First module.cc is the first20

module that you will look at and first.fcl is the FHiCL file that runs it. This21

exercise will suggest that you try to write some code on your own; the answer is22

provided in FirstAnswer01 module.cc and the file firstAnswer01.fcl23

runs it. These files will be discussed at length during these exercises.24

9.4.3 “Build Window” Setup25

Now go to your build window and do the following:26

1. Log in to the computer you chose in Section 7.3.27

2. Follow the site-specific setup procedure; see Chapter 428

3. $ cd $ART WORKBOOK WORKING BASE/<username>/workbook29

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–6

4. $ mkdir build-prof30

5. $ cd build-prof31

This new directory will be your build directory.32

6. $ source ../art-workbook/ups/setup for development \33

-p $ART WORKBOOK QUAL1

The output from this command will tell you to take some additional steps;2

do not do those steps.3

7. buildtool4

This step may take a few minutes.5

9.4.4 Examine Build Window Setup6

Logging in and sourcing the site-specific setup script should be clear by now.7

Notice that next you are told to cd to the same workbook directory as in Step 48

of the instructions for the source window. From there, you make a directory9

in which you will run builds (your build directory), and cd to it. (The name10

build-prof can be any legal directory name but it is suggested here because11

this example performs a profile build; see Section 2.6.7)12

Step 6 sources a script called setup for development found in the ups sub-13

directory of the source directory. This script, run exactly as indicated, defines14

build-prof to be your build directory. This command selects a profile build15

(via the option -p); it also requests that the ups qualifiers defined in the environ-16

ment variable ART WORKBOOK QUAL be used when requesting the ups products17

on which it depends; this environment variable was discussed in Section 8.8.3.18

The expected output is shown in Listing 9.1.19

Check that there are no error messages in the indicated block. The listing20

concludes with a request for you to run a cmake command; do NOT run cmake21

(this line is an artifact of layering cetbuildtools on top of cmake).22

Listing 9.1: Example of output created by setup for development
123

2 The working build directory is /ds50/app/user/kutschke/workbook/build-prof24

3 The source code directory is /ds50/app/user/kutschke/workbook/art-workbook25

4 ----------- check this block for errors -----------------------26

5 --27

6 /ds50/app/user/kutschke/workbook/build-prof/lib has been added to LD_LIBRARY_PATH28

7 /ds50/app/user/kutschke/workbook/build-prof/bin has been added to PATH29

830

9 CETPKG_SOURCE=/ds50/app/user/kutschke/workbook/art-workbook31

10 CETPKG_BUILD=/ds50/app/user/kutschke/workbook/build-prof32

11 CETPKG_NAME=art_workbook33

12 CETPKG_VERSION=v0_00_1334

13 CETPKG_QUAL=e2:prof1

14 CETPKG_TYPE=Prof2

153
16 Please use this cmake command:4

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–7

17 cmake -DCMAKE_INSTALL_PREFIX=/install/path -DCMAKE_BUILD_TYPE=$CETPKG_TYPE $CETPKG_SOURCE5

This script sets up all of the UPS products on which the Workbook depends; this6

is analogous to the actions taken by Step 5 in the first exercise (Section 8.4.2.1)7

when you were working in the art run-time environment. This script also creates8

several files and directories in your build-prof directory; these comprise the9

working space used by cetbuildtools.10

After sourcing this script, the contents of build-prof will be11

art_workbook-v0_00_13 bin cetpkg_variable_report diag_report lib12

At this time the two subdirectories bin and lib will be empty. The other files13

are used by the build system to keep track of its configuration.14

Step 7 (buildtool) tells cetbuildtools to build everything found in the source15

directory; this includes all of the Workbook exercises, not just the first one. The16

build process will take two or three mintues on an unloaded (not undergoing17

heavy usage) machine. Its output should end with the lines:18

------------------------------------19

INFO: Stage build successful.20

------------------------------------21

After the build has completed do an ls on the directroy lib; you will see that22

it contains a large number of shared library (.so) files; for v0 00 13 there23

will be 29 .so files; these are the files that art will load as you work through24

the exercises.25

Also do an ls on the directory bin; these are scripts that are used by cetbuild-26

tools to maintain its environment; if the Workbook contained instructions to27

build any executable programs, they would have been written to this direc-28

tory.29

After runing buildtool, the build directory will contain:30

admin CMakeFiles fcl31

art-workbook cmake_install.cmake inputFiles32

art_workbook-v0_00_13 CPackConfig.cmake lib33

bin CPackSourceConfig.cmake Makefile34

cetpkg_variable_report CTestTestfile.cmake output35

CMakeCache.txt diag_report ups36

Most of these files are standard files that are explained in the cetbuildtools37

documentation. . However, three of these items need special attention here38

because they are customized for the Workbook.39

An ls -l on the files fcl, inputFiles and output will reveal that they1

are symbolic links to2

inputFiles -> ${TOYEXPERIMENT_DIR}/inputFiles3

output -> ${ART_WORKBOOK_OUTPUT_BASE}/<username>/art_workbook_output4

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–8

fcl -> <your source directory>/art-workbook5

These links are present so that the FHiCL files for the Workbook exercises can6

be machine-independent.7

• The link inputFiles points to the directory inputFiles present in the8

toyExperiment UPS product; this directory contains the input files that9

art will read when you run the first exercise. These are the same files used10

in the first exercise; if you need a reminder of the contents of these files,11

see Table 8.1. These input files will also be used in many of the subsequent12

exercises.13

• The link outputFiles points to a directory that was created to hold your14

output files; the environment variable ART WORKBOOK OUTPUT BASE was15

defined by your site-specific setup procedure.16

• The link fcl points into your source directory hierarchy; it allows you to17

access the FHiCL files that are found in that hierarchy with the conve-18

nience of tab completions.19

9.5 Setting up to Run Exercises: Self-managed20

Working Directory21

If you have worked through Section 9.4, skip this section and proceed to Sec-22

tion 9.6.23

The explanation for the steps in these procedures that are the same as for the24

“standard” procedures are found in Section 9.4.2 (for the source window) and25

Section 9.4.4 (for the build window).26

In your source window do the following:27

1. Log in to the computer you chose in Section 7.3.28

2. Follow the site-specific setup procedure; see Chapter 429

3. Make a working directory to hold the checked out source30

4. cd to the directory made in the previous step31

5. Ensure that git is in your PATH32

6. $ git clone http://cdcvs.fnal.gov/projects/art-workbook33

7. $ cd art-workbook34

In the following, this will be refered to as your source directory.35

8. $ git checkout -b v0 00 13 v0 00 1336

Now go to your build window and do the following:37

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–9

1. Log in to the computer you chose in Section 7.3.38

2. Follow the site-specific setup procedure; see Chapter 439

3. Make a directory to hold the code that you will build; this is your build40

directory in your build window. In the following, this will be refered to as41

your build directory.1

4. cd to your build directory2

5. Make a directory, outside of the heirarchy rooted at your build directory,3

to hold output files created by the workbook exercises.4

6. $ ln -s <directory-made-in-previous-step> output5

7. $ source <your-source-directory>/ups/setup for development6

-p $ART WORKBOOK QUAL7

The output from this command will tell you to take some additional steps;8

do not do those steps.9

8. $ buildtool10

9.6 Logging In Again11

If you log out and later wish to log in again to work on this or any other exercise,12

you need to do the following:13

In your source window:14

1. Log in to the computer you chose in Section 7.3.15

2. Follow the site-specific setup procedure; see Table 4.116

3. cd to your source directory17

$ cd $ART WORKBOOK WORKING BASE/<username>/workbook/art-workbook18

4. source ups/setup deps -p19

In your build window:20

1. Log in to the computer you chose in Section 7.3.21

2. Follow the site-specific setup procedure; see Chapter 422

3. cd to your build directory23

$ cd $ART WORKBOOK WORKING BASE/<username>/workbook/build-prof24

4. $ source ../art-workbook/ups/setup for development -p $ART WORKBOOK QUAL25

If you chose to manage your own directory names (ie you followed Section 9.5),26

then the names of your source and build directories will be different than those27

shown.28

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–10

Compare these steps with those given in Sections 9.4.1 and Section 9.4.3. You29

will see that five steps and are missing from the source window instructions and30

three steps are missing from the build window instructions. The missing steps31

only needed to be executed the first time.32

9.7 The art Development Environment33

In the preceeding sections of this chapter you established what is known as the1

art development environment ; this is a superset of the art run-time environment,2

which was described in Section 8.10. This section summarizes the new elements3

that are part of the development environment but not part of the run-time4

environment.5

Figure 9.1: Elements of the art development environment as used in most of
the Workbook exercises; the arrows denote information flow, as described in the
text.

In Section 9.4.1, step 5b (git clone ...) was to contact the source code6

repository and make a clone of the repository in your disk space; step 5d git7

checkout ...) was to check out the correct version of the code from the8

clone and to put it into your source directory. The repository is hosted on a9

central Fermilab server and is accessed via the network. The upper left box in10

Figure 9.1 denotes the repository and the box below it denotes your working11

copy of the Workbook code. The flow of information during the clone and12

checkout processes is indicated by the green arrow in the figure.13

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–11

In step 7 of Section 9.4.3, you ran buildtool, which read the source code files14

from your working copy of the Workbook code and turned them into shared15

libraries. The script buildtool is part of the build system, which is denoted16

as the box in the center left section of the figure. When you ran buildtool,17

it wrote shared library files to the lib subdirectory of your build directory;18

this directory is denoted in the figure as the box in the top center labeled19

<build-directory>/lib. The orange arrows in the figure denote the in-20

formation flow at build-time. In order to perform this task, buildtool also21

needed to read header files and shared libraries found in the UPS products area,22

hence the orange arrow leading from the UPS Products box to the build system23

box.24

In the figure, information flow at run-time is denoted by the blue lines. When25

you ran the art executable, it looked for shared libraries in the directories defined26

by LD LIBRARY PATH. In the art development environment, LD LIBRARY PATH27

contains28

1. the lib subdirectory of your build directory.29

2. all of the directories previously described in Section 8.930

In all environments, the art executable looks for FHiCL files in31

1. in the file specified in the -c command line argument1

2. in the directories specified in FHICL FILE PATH2

The first of these is denoted in the figure by the box labeled “Configuration3

File.” In the art development environment, FHICL FILE PATH contains4

1. some directories found in your checked out copy of the source5

2. all of the directories previously described in Section 8.116

The remaining elements in Figure 9.1 are the same as described for Figure 8.1.7

9.8 Running the Exercise8

9.8.1 Run art on first.fcl9

In your build window, make sure that your current working directory is your10

build directory. From here, run the first part of this exercise by typing the11

following:12

$ art -c fcl/FirstModule/first.fcl > output/first.log13

(We suggest you get in the habit of routing your output to the output directory.)14

The output of this step will look much like that in Listing 8.1, but with two15

signficant differences. The first difference is that the output from first.fcl16

contains an additional line17

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–12

Hello from First::constructor.18

The second difference is that the words printed out for each event are a little1

different; the printout from first.fcl looks like2

Hello from First::analyze. Event id: run: 1 subRun: 0 event: 13

while that from hello.fcl looked like4

Hello World! This event has the id: run: 1 subRun: 0 event: 15

The reason for changing this printout is so that you can identify, from the6

printout, which module was run.7

9.8.2 The FHiCL File first.fcl8

Compare the FHiCL file used in this exercise, fcl/FirstModule/first.fcl,9

with hello.fcl from the first exercise (i.e., run cat or diff on them). Other10

than comments, the only difference is that the module type has changed from11

HelloWorld to First:12

$ diff $TOYEXPERIMENT_DIR/HelloWorldScripts/hello.fcl \13

fcl/FirstModule/first.fcl14

...15

< module_type : HelloWorld16

---17

> module_type : First18

The file first.fcl tells art to run a module named First. As described in19

Section 8.9, art looks through the directories defined in LD LIBRARY PATH20

and looks for a file whose name matches the pattern lib*First module.so.21

This module happens to be found at this location, relative to your build direc-22

tory:23

lib/libart-workbook_FirstModule_First_module.so24

This shared library file was created when you ran buildtool.25

9.8.3 The Source Code File First module.cc26

This section will describe the source code for the module First and will use it27

as a model to describe modules in general. The source code for this module is28

found in the following file, relative to your source directory (go to your source29

window!):30

art-workbook/FirstModule/First_module.cc31

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–13

For convenience, the contents of the file is also shown in Listing 9.2. When you32

ran buildtool, it compiled and linked this source file into the following shared33

library (relative to your your build directory):34

lib/libart-workbook_FirstModule_First_module.so35

This is the shared library that was loaded by art when you ran code for this36

exercise, in Section 9.8.2.1

In broad strokes, the file First module.cc:2

• declares a class named First3

• provides the implementation for the class4

• contains a call to the C-Preprocessor macro named DEFINE ART MODULE,5

discussed in Section 9.8.3.76

All module files that you will see in the Workbook share these “broad strokes.”7

Some experiments that use art have chosen to split the source code for one8

module into three separate files; the art team does not recommend this practice,9

but it is in use and it will be discussed in Section 9.11.2.10

Listing 9.2: The contents of First module.cc
111

2 #include ‘‘art/Framework/Core/EDAnalyzer.h’’12

3 #include ‘‘art/Framework/Core/ModuleMacros.h’’13

4 #include ‘‘art/Framework/Principal/Event.h’’14

515

6 #include <iostream>16

717

8 namespace tex {18

919

10 class First : public art::EDAnalyzer {20

1121

12 public:22

1323

14 explicit First(fhicl::ParameterSet const&);24

1525

16 void analyze(art::Event const& event) override;26

1727

18 };28

1929

20 }30

2131

22 tex::First::First(fhicl::ParameterSet const&){32

23 std::cout << ‘‘Hello from First::constructor.’’ << std::endl;33

24 }34

251
26 void tex::First::analyze(art::Event const& event){2

27 std::cout << ‘‘Hello from First::analyze. Event id: ‘‘3

28 << event.id()4

29 << std::endl;5

30 }6

317
32 DEFINE_ART_MODULE(tex::First)8

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–14

Those of you with some C++ experience will have noticed that there is no9

file named First module.h in the directory art-workbook/FirstModule.10

The explanation for this will be given in Section 9.11.1.11

9.8.3.1 The #include Files12

The first three non-blank lines in Listing 9.2 are three include directives that13

include header files. All three of these files are included from the art UPS14

product (where to find included header files is discussed in Section 6.6).15

If you are a C++ beginner you will likely find these files difficult to understand;16

you do not need to understand them at this time but you do need to know17

where to find them for future reference.18

The next non-blank line, #include <iostream>, includes the C++ header19

that enables this code to write output to the screen; for details, see any standard20

C++ documentation.21

9.8.3.2 The Declaration of the Class First22

The next portion of Listing 9.2 starts with the line “namespace tex {” which23

opens the namespace tex (the namespace is closed with a “}” about half way24

down the listing). If you are not familiar with namespaces, consult the standard25

C++ documentation.26

All of the code in the toyExperiment UPS product was written in a namespace27

named tex; the name tex is an acronym-like shorthand for the toyExperiment28

(ToyEXperiment) UPS product. In order to keep things simple, all of the classes29

in the Workbook are also declared in the namespace tex. For more information30

about this choice, see Section 6.6.4.31

The namespace contains the declaration of a class named First, which has32

only two members:33

1. a constructor, described in Section 9.8.3.334

2. a member function, named analyze, described in Section 9.8.3.535

art will call the constructor once at the start of each job and it will call analyze36

once for each event.37

The first line of the class First’s declaration is:38

class First : public art::EDAnalyzer {39

The fragment (: public art::EDAnalyzer) tells the C++ compiler that1

the class First is a (public4) derived class that inherits from a base class2

named art::EDAnalyzer. At this time it is not necessary to understand3

4The members of this class can be accessed by member and nonmember functions.

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–15

C++ inheritance, base classes or derived classes; just follow the pattern when4

you write you own modules.5

Section 2.6.3 discussed the idea of module types: analyzer, producer, filter and6

so on. If a class inherits from art::EDAnalyzer then the class is an analyzer7

module and it will have the properties of an analyzer module that were discussed8

in Section 2.6.3.9

For a class to be a valid art analyzer module, it must follow a set of rules defined10

by art :11

1. It must inherit from art::EDAnalyzer.12

2. It must provide a constructor with the argument list:13

fhicl::ParameterSet const&14

3. It must provide a member function named analyze, with the signature5:15

analyze(art::Event const&)16

4. If the name of a module class is <ClassName> then the source code for17

the module must be in a file named <ClassName> module.cc and this18

file must contain the lines:19

#include ‘‘art/Framework/Core/ModuleMacros.h’’20

DEFINE ART MODULE(<namespace>::<ClassName>21

5. It may optionally provide other member functions with signatures pre-22

scribed by art ; if these member functions are present in a module class,23

then art will call them at the appropriate times. Some examples are pro-24

vided in Chapter 10.25

You can see from Listing 9.2 that the class First follows all of these rules and26

that it does not contain any of the optional member functions.27

A module may also contain any other member data and any other member28

functions that are needed to do its job.29

The next line of the class declaration is:30

public:31

which tells the compiler that art is permitted to call the constructor First and32

the member function analyze6.33

The next line of the class declaration declares a constructor with the argument34

list prescribed by art :35

First(fhicl::ParameterSet const&);36

5 In C++ the signature of a member function is the name of the class of which the function
is a member, the name of the function, the number, types and order of the arguments, and
whether the member function is marked as const or volatile. The signature does not
include the return type.

6 Actually, in standard C++ this line says that any code may call these member functions;
but one of the design rules of art stipulates that nothing besides art itself may call them.

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–16

The requirement that the class name match the filename (minus the module.cc37

portion) is enforced by art ’s system for dynamically loading shared libraries.38

The requirement that the class provide the prescribed constructor is enforced39

by the macro DEFINE ART MODULE, which will be described in Section 9.8.3.7.40

And the last line of the class declaration declares the member function, analyze1

with the argument list required by art :2

analyze(art::Event const &) override;3

The override contextual keyword is a feature that is new in C++ 11 so older4

references will not discuss it. It is a new safety feature that we recommend you5

use; we cannot give a proper explanation until we have had a chance to discuss6

inheritance further. For now, just consider it a rule that, in all analyzer modules,7

you should provide this keyword as part of the declaration of analyze.8

For those who are knowledgeable about C++, the base class art::EDAnalyzer9

declares the member function analyze to be pure virtual; so it must be pro-10

vided by the derived class. The optional member functions of the base class11

are declared virtual but not pure virutal; do-nothing versions of these member12

functions are provided by the base class.13

In a future version of this documentation suite, more information will be avail-14

able in the Users Guide in Chapter .15

9.8.3.3 The Constructor for the Class First16

In Listing 9.2, following the class declaration and the closing brace of the names-17

pace, is the definition of the constructor:18

tex::First::First(fhicl::ParameterSet const&){19

std::cout << ‘‘Hello from First::constructor.’’ << std::endl;20

}21

It has the argument required by art (fhicl::ParameterSet const&).22

This constructor simply prints some information (via std::cout) to let the23

user know that it has been called.24

The fragment tex::First::First should be parsed as follows: the part25

First::First says that this definition is for a constructor of the class First.26

In principle there might be many classes named First, each in a different27

namespace; the leading tex:: says that this is the constructor for the class28

named First that is found in the namespace tex.29

The argument to the constructor is of type fhicl::ParameterSet const&;30

the class ParameterSet, found in the namespace fhicl, is a C++ represen-31

tation of a FHiCL parameter set (aka FHiCL table). This argument is not used32

in this exercise; you will see how it is used in Chapter 11.33

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–17

You will also notice that the argument to the constructor is passed by const1

reference, const&. This is a requirement specified by art ; if you write a con-2

structor that does not have exactly the correct argument type, then the com-3

piler will issue a diagnostic and will stop compilation. Because the argument4

is const, your code may not modify it; because it is passed by reference, it is5

efficient to pass a large parameter set. If you are not familiar with const’ness6

or with passing arguments by reference, consult the standard C++ documenta-7

tion.8

9.8.3.4 Aside: Unused Formal Parameters9

You have probably noticed that neither the declaration of the constructor nor10

the definition of the constructor provided a name for the argument of the con-11

structor; both only provided the type. This section describes why the name was12

omitted.13

Each argument of a function (remember that a constructor is just a special kind14

of function) has a type and a formal parameter ; in casual use most of us refer15

to the formal parameter as the name of the argument.16

In a function definition, if a formal parameter is unused in the body of the func-17

tion (i.e., between the braces {}) then the C++ standard says that the formal18

parameter is optional; it is common to provide formal parameters in function19

declarations as a form of documentation but the compiler always ignores these20

formal parameters. Even when the formal parameter is omitted, the type is still21

required because the full name of the function includes the number, type and22

order of its arguments.23

In the case of the Workbook, however, cetbuildtools has been configured to24

go one step further. It enforces the following rule:25

• If a function has a formal parameter that is not used by the defintion of26

the function, and if you intend that it not be used, then you must omit27

that formal parameter when writing the argument list in the definition.28

Consequently, if the compiler sees a formal parameter that is not used by the29

definition of the function, it will presume that this is an error and it will issue30

a diagnostic that stops compilation.31

cetbuildtools is configured this way because an unused formal parameter is32

frequently an indication of an error and the authors of the Workbook recommend33

that we make full use of all safety features provided by the compiler. It is easy34

enough to indicate to the compiler what your intention is; so we say “Just do35

it!”1

Your experiment’s build system might or might not be configured to follow this2

rule. It might permit unused formal parameters in function definitions or it3

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–18

might consider this situation to warrant a warning level diagnostic, not an error4

level diagnostic.5

9.8.3.5 The Member Function analyze and art::Event6

In Listing 9.2, following the definition of the constructor, you will find the7

definition of the member function analyze:8

void tex::First::analyze(art::Event const& event){9

std::cout << ‘‘Hello from First::analyze. Event id: ‘‘10

<< event.id()11

<< std::endl;12

}13

The override contextual keyword that was present in the declaration of this14

member function is not present in its definition; this is standard C++ us-15

age.16

This function has the argument list required by art (art::Event const&17

event). If the type of the argument is not exactly correct, including the the18

const&, the compiler will issue a diagnostic and stop compilation. The compiler19

is able to do this because of one of the features of inheritance: it requires20

that the member function named analyze have exactly the signature specified21

by the base class (the details of how this works is beyond the scope of this22

discussion).23

Section 2.6.1 discussed the HEP idea of an event and the art idea of a three-24

part event identifier. The class art::Event is the representation within art25

of the HEP notion of an event. For the present discussion it is safe to consider26

the following over-simplified view of an event: it contains an event identifier27

plus a collection of data products (see Section 2.6.4). The name of the formal28

parameter event has no meaning either to art or to the compiler – it is just29

an identifier – but your code will be easier to read if you choose a meaningful30

name.31

At any given time in a running art program there is only ever one art::Event32

object; in the rest of this paragraph we will call this object the event. It is owned33

and managed by art , but art lets analyzer modules see the contents of the event;34

it does so by passing the event by const reference when it calls the analyze35

member function of analyzer modules. Because the event is passed by reference36

(indicated by the &), the member function analyze does not get a copy of the37

event; instead it is told where to find the event. This makes it efficient to pass38

an event object even if the event contains a lot of information. Because the1

argument is a const reference, if your code tries to change the contents of the2

event, the compiler will issue a diagnostic and stop compilation.3

As described in Section 2.6.3, analyzer modules may only inspect data in event,4

not modify it. This section has shown how art institutes this policy as a hard5

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–19

rule that will be enforced rigorously by the compiler:6

1. The compiler will issue an error if an analyzer module does not contain7

an member function named analyze with exactly the correct signature.8

2. In the correct signature, the formal parameter event is a const refer-9

ence.10

3. Because event is const, the compiler will issue an error if the module11

tries to call any member function of art::Event that will modify the12

event.13

You can find the header file for art::Event by following the guidelines de-14

scribed in Section 6.6.2. A future version of this documentation will con-15

tain a chapter in the Users Guide that provides a complete explanation of16

art::Event. Here, and in the rest of the Workbook, the features of art::Event17

will explained as needed.18

The body of the function is almost trivial: it prints some information to let the19

user know that it has been called. In Section 9.8.1, when you ran art using20

first.fcl, the printout from the first event was21

Hello from First::analyze. Event id: run: 1 subRun: 0 event: 122

If you compare this to the source code you can see that the fragment23

<< event.id()24

creates the following printout25

run: 1 subRun: 0 event: 126

This fragment tells the compiler to do the following:27

1. In the class art::Event, find the member function named id() and28

call this member function on the object event.29

2. Whatever is returned by this function call, find its stream insertion oper-30

ator and call it.31

From this description you can probably guess that the member function32

art::Event::id() returns an object that represents the three part event33

identifier. In Section 9.8.3.6 you will learn that this guess is correct.34

9.8.3.6 art::EventID35

Before you work through this section, you may wish to review Section 6.6 which36

discusses how to find header files.37

Section 2.6.1 discussed the idea of an event identifier, which has three compo-38

nents, a run number, a subRun number and event number. In this section you39

will learn where to find the class that art uses to represent an event identifier.1

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–20

Rather than simply telling you the answer, this section will guide you through2

the process of discovering the answer for yourself.3

In the previous section you looked at some code and the printout that it made;4

this strongly suggested that the member function art::Event::id() returns5

an object that represents the event identifier. To follow up on this suggestion,6

look at the header file for art::Event:7

$ less $ART_INC/art/Framework/Principal/Event.h8

Or use one of the code browsers discussed in 6.6.2. In this file you will find the9

definition of the member function id():710

EventID11

id() const {return aux_.id();}12

The important thing to look at here is the return type, EventID, which looks13

like a good candidate to be the class that holds the event identifier; you do not14

need to (or want to) know anything about the data member aux . If you look15

near the beginning of Event.h you will see that it has the line:16

#include "art/Persistency/Provenance/EventID.h"17

which looks like a good candidate to be the header file for EventID. Look at18

this header file,19

$ less $ART_INC/art/Persistency/Provenance/EventID.h20

In this file you will discover that it is indeed the header file for EventID; you21

will also see that the class EventID is within the namespace art, making22

its full name art::EventID. Near the top of the ifle you will also see the23

comments:24

// An EventID labels an unique readout of the data acquisition system,25

// which we call an ‘‘event’’.26

This is another clue that art::EventID is the class we are looking for. Look27

again at EventID.h; you will see that it has accessor methods that permit you28

see the three components of the an event identfier:29

RunNumber_t run() const;30

SubRunNumber_t subRun() const;31

EventNumber_t event() const;32

Earlier in EventID.h the C++ type8 EventNumber t was defined as:33

namespace art {34

typedef std::uint32_t EventNumber_t;35

7In C++, newlines are treated the same as any other white space; so this could have been
written on a single line but the authors of Event.h have adopted a style in which return
types are always written on their own line.

8In C++ the collective noun type, refers to both the built-in types, such as int and float,
plus user defined types, which include classes, structs and typedefs.

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–21

}36

meaning that the event number is represented as a 32-bit unsigned integer. If you37

are not familiar with the C++ concept of typedef, or if you are not familiar with38

the definite-length integral types defined by the <cstdint> header, consult1

any standard C++ documentation. If you dig deeper into the layers included2

in the art::EventID header, you will see that the run number and subRun3

number are also implemented as 32-bit unsigned integers.4

At this point you can be sure that art::EventID is the class that art uses to5

represent the three part event identifier: the class has the right functionality.6

It’s also true that the comments agree with this hypothesis but comments are7

often ill-maintained; be wary of comments and always read the code. This is a8

fairly typical tour through the layers of software.9

The authors of art might have chosen an alternate definition of EventNumber t10

namespace art {11

typedef unsigned EventNumber_t;12

}13

The difference is the use of unsigned rather than std::uint32 t. This14

alternate version was not chosen because it runs the risk that some computers15

might consider this type to have a length of 32 bits while other computers might16

consider it to have a length of 16 or 64 bits. In the defintion that is used by art ,17

an event number is guaranteed to be exactly 32 bits on all computers.18

Why did the authors of art insert the extra level of indirection and not simply19

define the following member function inside art::EventID?20

std::unit32_t event() const;21

The answer is that it makes it easy to change the definition of the type should22

that be necessary. If, for example, an experiment requires that event numbers be23

of length 64 bits, only one change is needed, followed by a recompilation.24

It is good practice to use typedefs for every concept for which the underlying25

data type is not absolutely certain.26

It is a very common, but not universal, practice within the HEP C++ com-27

munity that typedefs that are used to give context-specific names to the C++28

built-in types (int, float, char etc) end in t.29

9.8.3.7 DEFINE ART MACRO: The Module Maker Macros30

The final line in First module.cc invokes a C preprocessor macro:31

DEFINE_ART_MODULE(tex::First)32

This macro is defined in the header file that was included by:33

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–22

#include ‘‘art/Framework/Core/ModuleMacros.h’’34

If you are not familiar with the C preprocessor, don’t worry; you do not need1

to look under the hood. But if you would like to learn more about the C pre-2

processor, consult any standard C++ reference.3

The DEFINE ART MODULE macro instructs the compiler to put some additional4

code into the shared library made by buildtool. This additional code provides5

the glue that allows art to create instances of the class First without ever6

seeing the header or the source for the class; it only gets to see the .so and7

nothing else.8

The DEFINE ART MODULE macro adds two pieces of code to the .so file. It9

adds a factory function that, when called, will create an instance of First and10

return a pointer to the base classes art::EDAnalyzer. In this way, art never11

sees the derived type of any analyzer module; it sees all analyzer modules via12

pointer to base. When art calls the factory function, it passes as an argument13

the parameter set specified in the FHiCL file for this module instance. The14

factory function passes this parameter set through to the constructor of First.15

The second piece of code put into the .so file is a static object that will be16

instantiated at load time; when this object is constructed, it will contact the17

art module registry and register the factory function under the name First.18

When the FHiCL file says to create a module of type First, art will simply19

call the registered factory function, passing it the parameter set defined in the20

FHiCL file. This is the last step in making the connection between the source21

code of a module and the art instantiation of a module.22

9.8.3.8 Some Alternate Styles23

C++ allows some flexibility in syntax, which can be seen as either powerful or24

confusing, depending on your level of expertise. Here we introduce you to a few25

alternate styles that you will need to recognize and may want to use.26

Look at the std::cout line in the analyze method of Listing 9.2:27

std::cout << ‘‘Hello from First::analyze. Event id: ‘‘28

<< event.id()29

<< std::endl;30

}31

This could have been written:32

art::EventID id = event.id();33

std::cout << "Hello from First::analyze. Event id: "34

<< id35

<< std::endl;36

This alternate version explicitly creates a temporary object of type art::EventID,37

whereas the original version created an implicit temporary object. When you1

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–23

are first learning C++ it is often useful to break down compound ideas by in-2

troducing explicit temporaries. However, the recommended best practice is to3

not introduce explicit temporaries unless there is a good reason to do so.4

Another style that you will certainly encounter is to write the first line of the5

above as:6

art::EventID id(event.id());7

Here id is initialized using constructor syntax rather than using assignment8

syntax. For almost all classes these two syntaxes will produce exactly the same9

result.10

You may also see the argument list of the analyze function written a little11

differently,12

void analyze(const art::Event&);13

instead of14

void analyze(art::Event const&);15

The position of the const has changed. These mean exactly the same thing and16

the compiler will permit you to use them interchangeably. In most cases, small17

differences in the placement of the const keyword have very different meanings18

but, in a few cases, both variants mean the same thing. When C++ allows two19

different syntaxes that mean the same thing, this documentation suite will point20

it out.21

Finally, Listing 9.3 shows the same information as Listing 9.2 but using a style in22

which the namespace remains open after the class declaration. In this style, the23

leading tex:: is no longer needed in the definitions of the constructor and of24

analyze. Both layouts of the code have the same meaning to the compiler. You25

are likely to encounter this style in the source code of many experiments.26

Listing 9.3: An alternate layout for First module.cc
127

2 #include ‘‘art/Framework/Core/EDAnalyzer.h’’28

3 #include ‘‘art/Framework/Core/ModuleMacros.h’’29

4 #include ‘‘art/Framework/Principal/Event.h’’30

531

6 #include <iostream>32

733

8 namespace tex {34

935

10 class First : public art::EDAnalyzer {36

111
12 public:2

133
14 explicit First(fhicl::ParameterSet const&);4

155
16 void analyze(art::Event const& event) override;6

177
18 };8

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–24

199
20 First::First(fhicl::ParameterSet const&){10

21 std::cout << ‘‘Hello from First::constructor.’’ << std::endl;11

22 }12

2313

24 void First::analyze(art::Event const& event){14

25 std::cout << ‘‘Hello from First::analyze. Event id: ‘‘15

26 << event.id()16

27 << std::endl;17

28 }18

2919

30 }20

3121

32 DEFINE_ART_MODULE(tex::First)22

9.9 What does the Build System Do?23

9.9.1 The Basic Operation24

In Section 9.4.3 you issued the command buildtool, which built First module.cc.25

The purpose of this section is to provide some more details about building mod-26

ules.27

When you ran buildtool it performed the following steps:28

1. It compiled First module.cc to create an object file (ending in .o).29

2. It linked the object file against the libraries on which it depends and30

inserted the result into a shared library (ending in .so).31

The object file contains the machine code for the class tex::First and the32

machine code for the additional items created by the DEFINE ART MODULE33

C preprocessor macro. The shared library contains the information from the34

object file plus some additional information that is beyond the scope of this35

discussion. This process is called building the module.36

The verb building can mean different things, depending on context. Sometimes37

is just means compiling; sometimes is just means linking; more often, as in this38

case, it means both.39

To be complete, when you ran buildtool it built all of code in the Workbook,1

both modules and non-modules, but this section will only discuss how it built2

First module.cc.3

How did buildtool know what to do? The answer is that it looked in your4

source directory, where it found a file named CMakeLists.txt; this file con-5

tains instructions for cetbuildtools. Yes, when you ran buildtool in your6

build directory, it did look in your source directory; it knew to do this because,7

when you sourced setup for development, it saved the name of the source8

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–25

directory. The instructions in CMakeLists.txt tell cetbuildtools to look9

for more instructions in the subdirectory ups and in the file art-workbook/CMakeLists.txt,10

which, in turn, tells it to look for more instructions in the CMakeLists.txt11

files in each subdirectory of art-workbook.12

When cetbuildtools has digested these instructions it knows the rules to13

build everything that it needs to build.14

The object file created by the compilation step is a temporary file and, once it15

has been inserted into the shared library, it is not used any more. Therefore the16

name of the object file is not important.17

On the other hand, the name of the shared library file is very important. art18

requires that for every module source file (ending in module.cc) the build19

system must create exactly one shared library file (ending in module.so). It20

also requires that the name of each module.so file conform to a pattern. Con-21

sider the example of the file First module.cc; art requires that the shared22

library for this file match the pattern23

lib*First_module.so24

where the * wildcard matches 0 or more characters.25

When naming shared libraries, buildtool uses the following algorithm, which26

satisfies the art requirements and adds some addtional features; the algorithm27

is illustrated using the example of First module.cc:28

1. find the relative path to the source file, starting from the source directory29

art-workbook/FirstModule/First module.cc30

2. replace all slashes with underscores31

art-workbook FirstModule First module.cc32

3. change the trailing .cc to .so33

art-workbook FirstModule First module.so34

4. add the prefix lib35

libart-workbook FirstModule First module.so36

5. put the file into the directory lib, relative to the build directory37

lib/libart-workbook FirstModule First module.so38

You can check that this file is there by issuing the following command from your39

build directory:40

$ ls -l lib/libart-workbook_FirstModule_First_module.so41

This algorithm guarantees that every module within art-workbook will have42

a unique name for its shared library.43

The experiments using art have a variety of build systems. Some of these follow44

the minimal art-conforming pattern, in which the wildcard is replaced with1

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–26

zero characters. If the Workbook had used such a build system, the name of2

the shared library file would have been3

lib/libFirst_module.so4

Both names are legal. Some additional features that are enabled by including5

the full path in the name will be discussed in Section .6

9.9.2 Incremental Builds and Complete Rebulds7

When you edit a file in your source area you will need to rebuild that file in8

order for those changes to take effect. If any other files in your source area9

depend on the file that you edited, they too will need to be rebuilt. To do this,10

reissue the buildtool command:11

$ buildtool12

Remember that the buildtool command must be executed from your build13

directory and that, before running buildtool, you must have setup the envi-14

ronment in your build window. When you run this command, cetbuildtools15

will automatically determine which files need to be rebuilt and will rebuild them;16

it will not waste time rebuilding files that do not need to be rebuilt. This is17

called an incremental build and it will usually complete much faster than the18

initial build.19

If you want to clean up everything in your build area and rebuild everything20

from scratch, use the following command:21

$ buildtool -c22

This command will give you five seconds to abort it before it starts removing23

files; to abort, type ctrl-C in your build window. It will take about the same24

time to execute as did your initial build of the Workbook. The name of the25

option -c is a mnemoic for “clean”.26

When you do a clean build it will remove all files in your build directory that27

are not managed by cetbuildtools. For example, if you redirected the output28

of art as follows,29

$ art -c fcl/FirstModule/first.fcl >& first.log30

then, when you do a clean build, the file first.log will be deleted. This is31

why the instructions earlier in this chapter told you to redirect ouptut to a log32

file by33

$ art -c fcl/FirstModule/first.fcl >& output/first.log34

When you ran buildtool, it created a directory to hold your output files and35

you created a symbolic link, named output, from your build directory to this36

new directory. Both the other directory and the symbolic link survive clean37

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–27

builds and your output files will be preserved. The Workbook exercises write38

all of their root and event-data output files to this directory.39

If you edit certain files in the ups subdirectory of your source directory, rebuild-1

ing requires an extra step. If you edit one of these files, the next time that you2

run buildtool, it will issue an error message saying that you need to re-source3

setup for development. If you get this message, make sure that you are in4

your build directory, and5

$ source ../art-workbook/ups/setup_for_development -p $ART_WORKBOOK_QUAL6

$ buildtool7

9.9.3 Finding Header Files at Compile-time8

When setup for development establishes the working environment for the9

build directory, it does a UPS setup on the UPS products that it requires;10

this triggers a chain of additional UPS setups. As each UPS product is11

set up, that product defines many enviroment variables, two of which are12

<PRODUCT-NAME> INC and <PRODUCT-NAME> LIB. The first of these points13

to a directory that is the root of the header file hierarchy for that version of14

that UPS product. The second of these points to a single directory that holds15

all of the shared library files for that UPS product.16

You can spot-check this by doing, for example,17

$ ls $TOYEXPERIMENT_INC/*18

$ ls $TOYEXPERIMENT_LIB19

$ ls $ART_INC/*20

$ ls $ART_LIB21

You will see that the INC directories have a subdirectory tree underneath them22

while the LIB directories do not.23

There are a few small perturbations on this pattern. The most visible is that the24

ROOT product puts most of its header files into a single directory, $ROOT INC25

and does not clone the directory heirarchy of its source files. The Geant4 product26

does the same thing.27

When the compiler compiles a .cc file, it needs to know where to find the files28

specified by the #include directives. The compiler looks for included files by29

first looking for arguments on the command line of the form30

-I<absolute-path-to-a-directory>31

There may be many such arguments on one command line. The compiler as-32

sembles the set of all -I arguments and uses it as an include path; that is, it33

looks for the header files by trying the first directory in the path and if it does34

not find it there, it tries the second directory in the path, and so on. The choice35

of -I for the name of the argument is a mnemonic for Include.36

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–28

When buildtool compiles a .cc file it adds many -I options to the com-1

mand line; it adds one for each UPS product that was set up when you sourced2

setup for development. When building First module.cc, buildtool3

added -I$ART INC, -I$TOYEXPERIMENT INC and many more.4

A corollary of this discussion is that when you wish to include a header file5

from a UPS product, the #include directive must contain the relative path6

to the desired file, starting from the INC environment variable for that UPS7

product.8

This system illustrates how the Workbook can work the same way on many dif-9

ferent computers at many different sites. As the author of some code, you only10

need to know paths of include files relative to the relevant INC environment11

variable. This environment variable may have different values from one com-12

puter to another but the setup and build systems will ensure that the site specific13

information is communicated to the compiler using environment variables and14

the -I option.15

This system has the potential weakness that if two products each have a header16

file with exactly the same relative path name, the compiler will get confused.17

Should this happen, the compiler will always choose the file from the earlier18

of the two -I arguments on the command line, even when the author of the19

code intended the second choice to be used. To mitgate this problem, the art20

and UPS teams have adopted the convention that, whenever possible, the first21

element of the relative path in an #include directive will be the UPS package22

name. It is the implementation of this convention that led to the repeated23

directory name art-workbook/art-workbook that you saw in your source24

directory. There are a handful of UPS products for which this pattern is not25

followed and they will be pointed out as they are encountered.26

The convention of having the UPS product name in the relative path of #include27

directives also tells readers of the code where to look for the included file.28

9.9.4 Finding Shared Library Files at Link-time29

The module First module.cc needs to call methods of the class art::Event.30

Therefore the compiler left a notation in the object file saying “to use this ob-31

ject file you need to tell it where to find art::Event.”9 The technical way to32

say this is that the object file contains a list of undefined symbols or undefined33

external references. When the linker makes the shared library34

libart-workbook_FirstModule_First_module.so35

it must resolve all of the undefined symbols from all of the object files that go36

into the library. To resolve a symbol, the linker must learn what shared library37

9 This is a deliberate vague statement; the next level of detail is too much for this discussion.

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–29

defines that symbol. When it discovers the answer, it will write the name of38

that shared library into something called the dependency list of1

libart-workbook_FirstModule_First_module.so2

A dependency list is kept inside each shared library. cetbuildtools tells the3

linker that the dependency list should contain only the filename of each shared4

library, not the full path to it. If, after the linker has finished, there remain5

unresolved symbols, then the linker will issue an error message and the build6

will fail.7

Dependency lists are not recursive. If library A depends on library B and library8

B depends on library C, then the dependency list library A needs to contain9

only library B. Sometimes this is discussed by saying that the dependency list10

needs to contain only direct dependencies or first order dependencies.11

To learn where to look for symbol definitions, the linker looks at its command12

line to find something called the link list. The link list can be specified in several13

different ways and the way that cetbuildtools uses is simply to write the link14

list as the absolute path to every .so file that the linker needs to know about.15

The link list can be different for every shared library that the build system16

builds. However it is very frequently true that if a directory contains several17

modules, then all of the modules will require the same link list. The bottom18

line is that the author of a module needs to know the link list that is needed to19

build the shared library for that module.20

For these Workbook exercises, the author of each exercise has determined the21

link list for each shared library that will be built for that exercise. In the22

cetbuildtools system, the link list for First module.cc is located in the23

CMakeLists.txt file from same directory as First module.cc; the con-24

tents of this file are shown in Listing 9.4. This CMakeLists.txt file says that25

all modules found in this directory should be built with the same link list and26

it gives the link list; the link list is the seven lines that begin with a dollar27

sign; these lines each contain one cmake variable. Recall that cetbuildtools28

is a build system that lives on top of cmake, which is another build system. A29

cmake variable is much like an environment variable except that is only defined30

within the environment of the running build system; you cannot look at it with31

printenv.32

The five cmake variables beginning with ART were defined when buildtool33

set up the UPS art product. Each of these variables defines an absolute path to34

a shared library in $ART LIB. For example ${ART FRAMEWORK CORE} resolves35

to36

$ART_LIB/libart_Framework_Core.so37

Almost all art modules will depend on these five libraries. Similarly the other38

two variables resolve to shared libraries in the fhiclcpp and cetlib UPS prod-39

ucts.1

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–30

When cetbuildtools constructs the command line to run the linker, it copies2

the link list from the CMakeLists.txt file to the command linker line.3

The experiments that use art use a variety of build systems. Some of these4

build systems do not require that all external symbols be resolved at link-time;5

they allow some external symbols to be resolved at run-time. This is legal but6

it can lead to certain difficulties. A future version of this documentation suite7

will contain a chapter in the Users Guide that discusses linkage loops and how8

use of closed links can will prevent them. This section will then just reference9

it.10

Consult the cmake and cetbuildtools documentation to understand the re-11

maining details of this file.12

Listing 9.4: The file art-workbook/FirstModule/CMakeLists.txt
1 art_make(MODULE_LIBRARIES13

2 ${ART_FRAMEWORK_CORE}14

3 ${ART_FRAMEWORK_PRINCIPAL}15

4 ${ART_PERSISTENCY_COMMON}16

5 ${ART_FRAMEWORK_SERVICES_REGISTRY}17

6 ${ART_FRAMEWORK_SERVICES_OPTIONAL}18

7 ${FHICLCPP}19

8 ${CETLIB}20

9)21

9.9.5 Build System Details22

This section provides the next layer of details about the build system; in a23

future version of this documentation set, the Users Guide will have a chapter24

with all of the details. This entire section contains expert material.25

If you want to see what buildtool is actually doing, you can enable verbose26

mode by issuing the command:27

$ buildtool VERBOSE=TRUE28

For example, if you really want to know the name of the object file, you can29

find it in the verbose output. For this exercise, the object file is30

./art-workbook/FirstModule/CMakeFiles/31

art-workbook_FirstModule_First_module.dir/First_module.cc.o32

where the above is really just one line.33

Also, you can read the verbose listing to discover the flags given to the compiler34

and linker. The compiler and linker flags, valid at time of writing are given35

in Table 9.1; actually a few of them are not present in the table because they36

take a lot of space but don’t provide critical functionality. The C++ 11 features37

are selected by the presence of the -std=c++11 flag and a high level of error38

checking is specified. The linker flag,39

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–31

Table 9.1: Compiler and Linker Flags for a Profile Build

Step Flags

Compiler -Dart workbook FirstModule First module EXPORTS -DNDEBUG
Linker -Wl,–no-undefined -shared
Both -O3 -g -fno-omit-frame-pointer -Werror -pedantic

-Wall -Werror=return-type -Wextra -Wno-long-long -Winit-self
-Woverloaded-virtual -std=c++11 -D GLIBCXX USE NANOSLEEP -fPIC

-Wl,--no-undefined40

tells the linker that it must resolve all external references at link time. This is1

sometime referred to as a closed link.2

9.10 Suggested Activities3

This section contains some suggested exercises in which you will make your4

own modules and in which you will learn more about how to use the class5

art::EventID.6

9.10.1 Create Your Second Module7

In this exercise you will create a new module by copying First module.cc8

and making the necessary changes; you will build it using buildtool; you make9

a FHiCL file to run the new module by copying first.fcl and making the10

necessary changes; and you will run the new module using the new FHiCL11

file.12

Go to your source window and cd to your source directory. If you have logged13

out, out remember to re-establish your working environment; see Section 9.614

Type the following commands:15

$ cd art-workbook/First16

$ cp First_module.cc Second_module.cc17

$ cp first.fcl second.fcl18

Edit the files Second module.cc and first.fcl. In both files, change every19

occurence of the string “First” to “Second”; there are eight places in the source20

file and two in the FHiCL file, one of which is in a comment.21

The new module needs the same link list as did First module.cc so there is22

no need to edit CMakeLists.txt; the instructions in CMakeLists.txt tell23

buildtool to build all modules that it finds in this directory and to use the24

same link list for all modules.25

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–32

Go to your build window and cd to your build directory. If you have logged, out26

remember to re-establish your working environment; see Section 9.6. Rebuild27

the Workbook code:28

$ buildtool29

This should complete with the message:30

------------------------------------31

INFO: Stage build successful.32

------------------------------------33

If you get an error message, consult a local expert or consult the art team as34

described in Section 2.4.35

When you run buildtool it will perform an incremental build (see Sec-36

tion 9.9.2), during which it will detect Second module.cc and build it.37

You can verify that buildtool created the expected shared library:1

$ ls lib/*Second*.so2

lib/libart-workbook_FirstModule_Second_module.so3

Stay in your build directory and run the new module:4

$ art -c fcl/FirstModule/second.fcl >& output/second.log5

Compare output/second.log with output/first.log. You should see6

that the printout from First module.cc has been replaced by that from7

Second module.cc.8

9.10.2 Use artmod to Create Your Third Module9

This exercise is much like the previous one; the difference is that you will use a10

tool named artmod to create the source file for the module.11

Go to your source window and cd to your source directory. If you have logged12

out, remember to re-establish your working environment; see Section 9.613

The command artmod creates a file containing the skeleton of a module. It14

is supplied by the UPS product cetpkgsupport, which was set up when you15

performed the last step of establishing the environment in the source window,16

sourcing setup deps. You can verify that the command is in your path by17

using the bash built-in command type:18

$ type artmod19

artmod is hashed (/ds50/app/products/cetpkgsupport/v1_02_00/bin/artmod)20

In general the leading elements of the directory name will be different on your21

computer; they will be the leading elements of your UPS products area.22

From your source directory, type the following commands:23

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–33

$ cd art-workbook/First24

$ artmod analyzer tex::Third25

$ cp first.fcl third.fcl1

The second argument tells artmod to create a file named Third module.cc2

that contains the skeleton for a module named Third in the namespace tex;3

the first argument tells artmod that it should write the skeleton for an analyzer4

module.5

If you compare Third module.cc to First module.cc you will see a few6

differences:7

1. the layout of the class is a little different but the two layouts are equivalent8

2. there are some extra #include directives9

3. the include for <iostream> is missing10

4. a formal parameter is supplied in the definition of the constructor11

5. in the analyze member function, the name of the formal parameter is12

different.13

6. artmod supplies the skelton of a destructor14

The #include directives provided by artmod are a best guess, made by the15

author of artmod, about what #include directives will be needed in a “typ-16

ical” module. Other than slowing down the compiler by an amount you won’t17

notice, the extra #include directives do no harm; keep them or leave them as18

you see fit.19

Edit Third module.cc20

1. add the #include directive for <iostream>21

2. copy the bodies of the constructor and the analyze member function22

from First module.cc; change the string “First” to “Third”.23

3. delete the formal parameter from the definition of the constructor24

4. in the definition of the member function analyze, change the name of25

the formal parameter to event.26

When you built First module.cc, the compiler wrote a destructor for you27

that is identical to the destructor written by artmod; so you can leave the28

destructor as artmod wrote it. This class has no work to do in the destructor29

so the one written by artmod has an empty body.30

Edit third.fcl Change every occurence of the string “First” to “Third”; there31

are two places, one of which is in a comment.32

Go to your build window and cd to your build directory. If you have logged, out33

remember to re-establish your working environment; see Section 9.6. Rebuild34

the Workbook code:35

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–34

$ buildtool36

Refer to the previous section to learn how to identify a successful build and how1

to verify that the expected library was created.2

Stay in your build directory and run the third module:3

$ art -c fcl/FirstModule/third.fcl >& output/third.log4

Compare output/third.log with output/first.log. You should see5

that the printout from First module.cc has been replaced by that from6

Third module.cc.7

artmod has many options that you can explore by typing:8

$ artmod --help9

9.10.3 Running Many Modules at Once10

In this exercise you will run four modules at once, the three made in this exercise11

plus the HelloWorld module from Chapter 8.12

Go to your source window and cd to your source directory. Type the following13

commands:14

$ cd art-workbook/First15

$ cp first.fcl all.fcl16

Edit the file all.fcl and replace the physics parameter set with that found17

in Listing 9.5. This parameter set:18

1. defines four module labels19

2. puts all four module labels into the end paths sequence.20

When you run art on this FHiCL file, art will first look at the definition of21

end paths and learn that you would like it to run four module labels. Then it22

will look in the analyzers parameter set to find the definition of each module23

label; in each definition art will find the class name of the module that it should24

run. Given the class name and the environment variable LD LIBRARY PATH,25

art can find the right shared library to load. If you need a refresher on module26

labels and end paths, refer to Sections 8.7.7 and 8.7.8.27

Listing 9.5: The physics parameter set for all.fcl
1 physics :{28

2 analyzers: {29

3 hello : {30

4 module_type : HelloWorld31

5 }32

6 first : {33

7 module_type : First34

8 }35

9 second : {36

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–35

10 module_type : Second37

11 }1

12 third : {2

13 module_type : Third3

14 }4

15 }5

166
17 e1 : [hello, first, second, third]7

18 end_paths : [e1]8

199
20 }10

Go to your build window and cd to your build directory. If you have logged,11

out remember to re-establish your working environment; see Section 9.6. You12

do not need to build any code for this exercise.13

Run the exercise:14

$ art -c fcl/FirstModule/all.fcl >& output/all.log15

Compare output/all.log with the log files from the previous exercises. The16

new log file should contain printout from each of the four modules. Once, near17

the start of the file, you should see the printout from the three constructors;18

remember that the HelloWorld module does not make any printout in its19

constructor. For each event you should see the printout from the four analyze20

member functions.21

Remember that art is free to run analyzer modules in any order; this was22

discussed in Section 8.7.8.23

9.10.4 Access Parts of the EventID24

In this exercise, you will access the individual parts of the event identifier.25

Before proceeding with this section, review the material in Section 9.8.3.6 which26

discusses the class art::EventID. The header file for this class is:27

$ART_INC/art/Persistency/Provenance/EventID.h"28

In this exercise, you are asked to rewrite the file Second module.cc so that29

the printout made by the analyze method looks like the following:30

Hello from FirstAnswer01::analyze. run number: 1 sub run number: 0 event number: 131

Hello from FirstAnswer01::analyze. run number: 1 sub run number: 0 event number: 232

and so on for each event.33

To do this, you will need to reformat the text in the std::cout statement and1

you will need to separately extract the run, subRun and event numbers from2

the art::EventID object.3

You will do the editing in your source window, in the subdirectory art-workbook/FirstModule.4

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–36

When you think that you have successfully rewritten the module, you can test it5

by going to your build window and cd’ing to your build directory. Then:6

$ buildtool7

$ art -c fcl/FirstModule/second.fcl >& output/eventid.log8

Work on this for 15 minutes or so. If you have not figured out how to do it,9

you can look at the file FirstAnswer01 module.cc, in the same directory10

as First module.cc. This file as one possible answer.11

To run the answer module, to verify that it makes the requested output:12

$ art -c fcl/FirstModule/firstAnswer01.fcl >& output/firstAnswer01.log13

You did not need to build this module because it was already built the first time14

that you ran buildtool; that run of buildtool built all of the modules in15

the Workbook.16

There is second correct answer to this exercise. If you look at the header file for17

art::Event, you will see that this class also has member functions18

EventNumber_t event() const {return aux_.event();}19

SubRunNumber_t subRun() const {return aux_.subRun();}20

RunNumber_t run() const {return id().run();}21

So you could have called these directly,22

std::cout << ‘‘Hello from FirstAnswer01::analyze. ‘‘23

<< ‘‘ run number: ‘‘ << event.run()24

<< ‘‘ sub run number: ‘‘ << event.subRun()25

<< ‘‘ event number: ‘‘ << event.event()26

<< std::endl;27

Instead of28

std::cout << ‘‘Hello from FirstAnswer01::analyze. ‘‘29

<< ‘‘ run number: ‘‘ << event.id().run()30

<< ‘‘ sub run number: ‘‘ << event.id().subRun()31

<< ‘‘ event number: ‘‘ << event.id().event()32

<< std::endl;33

But the point of this exercise was to learn a little about how to dig down into34

nested header files to find the information you need.35

9.11 Final Remarks36

9.11.1 Why is there no First module.h File?37

When you performed the exercises in this chapter, you saw, for example, the38

file First module.cc but there was no corresponding First module.h file.39

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–37

This section will explain why.40

In a typical C++ programming environment there is a header file (.h) for each41

source file (.cc). For definiteness, consider the examples of Point.h and42

Point.cc that you saw in Section 5.6.10.1

The reason for having Point.h is that the implementation of the class, Point.cc,2

and the users of the class, need to agree on what the class Point is; in this3

example the only user of the class is the main program, ptest.cc. The file4

Point.h serves as the unique, authoritative declaration of what the class is;5

both Point.cc and ptest.cc rely on on this declaration.6

If you think carefully, you are already aware of a very common exception to the7

pattern of one .h file for each .cc file: there is never header file for a main pro-8

gram. For example, in the examples that exercised the class Point, there was9

never a header file for the main program ptest.cc. The reason for this is that10

there is no other piece of user written code that needs to know about the decla-11

ration of any classes or functions declared or defined inside ptest.cc.12

The reason that there is no First module.cc file is simply that every entity13

that needs to see the declaration of the class First is already inside the file14

First module.cc. Therefore there is no reason to have a separate header15

file. There was a dangerous bend paragraph at the end of Section 9.8.3.7 that16

described how art is able to use modules without needing to know about the17

declaration of the module class.18

The architecture of art says that only art may construct instances of module19

classes and only art may call member functions of module classes. In particular,20

modules may not construct other modules and may not call member functions of21

other modules. The absence of a First module.h, provides a physical barrier22

that enforces this design.23

9.11.2 The Three File Module Style24

In this chapter, the source for the module First was written in a single file. You25

may also write it using three files, First.h, First.cc and First module.cc.26

The authors of art do not recommend this style because it exposes the decla-27

ration of First in a way that permits it to be misused (as was discussed in28

Section 9.11.1).29

However some experiments do use this style. Therefore this section has been1

provided.2

In this style, First.h contains the class declaration plus any necessary #include3

directives; it also now requires code guards (see Section 30.8); this is shown in4

Listing 9.6. The file First.cc contains the definitions of the constructor and5

the analyze member function, plus the necessary #include directives; this6

is shown in Listing 9.7. And First module.cc is now stripped down to the7

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–38

invocation of the DEFINE ART MODULE macro plus the necessary #include8

directives; this is shown in Listing 9.8.9

The build system distributed with the Workbook has not been configured to10

build modules written in this style.11

Listing 9.6: The contents of First.h in the 3 file model

112

2 #ifndef art-workbook_FirstModule_First_h13

3 #define art-workbook_FirstModule_First_h14

415

5 #include ‘‘art/Framework/Core/EDAnalyzer.h’’16

6 #include ‘‘art/Framework/Principal/Event.h’’17

718

8 namespace tex {19

920

10 class First : public art::EDAnalyzer {21

1122

12 public:23

1324

14 explicit First(fhicl::ParameterSet const&);25

1526

16 void analyze(art::Event const& event) override;27

1728

18 };29

1930

20 }31

21 #endif32

Listing 9.7: The contents of First.cc in the 3 file model

133

2 #include ‘‘art-workbook/FirstModule/First.h’’34

335

4 #include <iostream>36

537

6 tex::First::First(fhicl::ParameterSet const&){1

7 std::cout << ‘‘Hello from First::constructor.’’ << std::endl;2

8 }3

94
10 void tex::First::analyze(art::Event const& event){5

11 std::cout << ‘‘Hello from First::analyze. Event id: ‘‘6

12 << event.id()7

13 << std::endl;8

14 }9

Listing 9.8: The contents of First module.cc in the 3 file model

110

2 #include ‘‘art-workbook/FirstModule/First.h’’11

3 #include ‘‘art/Framework/Core/ModuleMacros.h’’12

413

5 DEFINE_ART_MODULE(tex::First)14

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–39

9.12 Review15

9.12.1 What Makes a class an Analyzer Module16

This section reviews the properties that a class must have in order to be an17

analyer module. These were first given in Section 9.8.3.2 but are repeated here18

for easy reference:19

1. it must inherit from art::EDAnalyzer20

2. it must provide a constructor with the argument list21

fhicl::ParameterSet const&22

3. it must provide a member function named analyze, with the signature:23

analyze(art::Event const&)24

4. if the name of a module class is <ClassName> then the source code for25

the module must be in a file named <ClassName> module.cc and this26

file must contain the lines:27

#include ‘‘art/Framework/Core/ModuleMacros.h’’28

DEFINE ART MODULE(tex::<ClassName>)29

5. it may, optionally, provide other member functions with signatures pre-30

scribed by art ; if these member functions are present in a module class,31

then art will call them at the appropriate times. Some examples are pro-32

vided in Chapter 1033

The art team recommends that you write modules using the one file style, not34

the three file style; the above list is written presuming that you use the one file35

style.36

9.12.2 Flow from source to .fcl37

This section reviews how the source code found in First module.cc is exe-38

cuted by art :39

1. the script setup for development defines many environment variables40

that are used by buildtool and by art and toyExperiment.41

2. one of the important environment variables is LD LIBRARY PATH. This42

contains the directory lib in your build area plus the lib directories43

from many UPS products, including art .1

3. buildtool compiles First module.cc to a temporary object file.2

4. buildtool links the temporary object file to create a shared library in the3

lib subdirectory of your build area:4

lib/libart-workbook FirstModule First module.so5

art Documentation

Chapter 9: Exercise 2: Build and Run Your First Module 9–40

5. when you run art using file first.fcl, the FHiCL file tells art to find6

and load a module with the module type First.7

6. in response to this request, art will search the directories in LD LIBRARY PATH8

to find a shared library file whose name matches the pattern:9

lib*First module.so10

7. if art finds zero matches to this pattern, or more than one match to this11

pattern, it will issue and error message and stop12

8. if art finds exactly one match to this pattern, it will load the shared library.13

9. after art has loaded the shared library, it has access to a function that14

can, on demand, create instances of the class First.15

The last bullet really means that the shared library contains a factory function16

that can construct instances of First and return a pointer to the base class,17

art::EDANalyzer. The shared library also contains a static object that, at18

load-time, will contact the art module registry and register the factory function19

under the module type First.20

art Documentation

Chapter 10: Exercise 3: The Optional Member Functions of art Modules 10–1

10 Exercise 3: The Optional Member Func-21

tions of art Modules22

10.1 Introduction23

In this exercise you will build and execute an analyzer module that illustrates24

three of the optional member functions of an art module: beginJob, beginRun25

and beginSubRun. These member functions are called, respectively, once at26

the start of the art job, once for each new run and once for each new subRun.27

These member functions are optional functions in all types of modules, not just28

analyzer modules.29

You will also be given a suggested exercise to add three more of the optional30

member functions, endJob, endRun and endSubRun. The Workbook provides31

a solution for this suggested exercise.32

10.2 Prerequisites33

The prerequisites for this chapter is all of the material in Part I (Introduction)34

and all of the material up to this point in Part II (Workbook).35

In particular make sure that you understand the idea of the event loop, that36

was described in Section 2.6.2.1

10.3 What You Will Learn2

You will learn about the optional member functions of an art module.3

1. beginJob()4

2. beginRun(art::Run const&)5

3. beginRun(art::SubRun const&)6

art Documentation

Chapter 10: Exercise 3: The Optional Member Functions of art Modules 10–2

4. endJob()7

5. endRun(art::Run const&)8

6. endRun(art::SubRun const&)9

You will also learn about the classes,10

1. art::RunID11

2. art::Run12

3. art::SubRunID13

4. art::SubRun14

10.4 Setting up to Run this Exercise15

To run this exercise, you need to be logged in to the computer on which you ran16

Exercise 2 (in Chapter 9). If you are continuing on from the previous exercise,17

you need to keep both your source and build windows open.18

If you are logging back in, follow the instructions in Section 9.6 to reestablish19

your source and build windows.20

In your source window, cd to your source directory. Then cd to the directory21

for this exercise and look at its contents22

$ cd art-workbook/OptionalMethods23

\begin{samepage}$ ls24

CMakeLists.txt OptionalAnswer01_module.cc Optional_module.cc25

optionalAnswer01.fcl optional.fcl26

\end{samepage}27

The source code for the module you will run is Optional module.cc and the28

FHiCL file to run it is first.fcl. The file CMakeLists.txt is identical that29

used by the previous exericse; this is because the new features introduced by30

this module do not require any modifications to the link list. The other two files31

are the answers to the exercise you will be asked to do in Section 10.9.32

In your build window, make sure that you are in your build directory. In this33

exercise you do not need to build any code becaue all code for the Workbook34

was built the first time that your ran buildtool.1

10.5 The Source File Optional module.cc2

In your source window, look at the source file, Optional module.cc and3

compare it to First module.cc. The differences are4

art Documentation

Chapter 10: Exercise 3: The Optional Member Functions of art Modules 10–3

1. the name of the class has changed from First to Optional5

2. it has two new include directives, for Run.h and SubRun.h6

3. the class declaration declares three new member functions7

void beginJob () override;8

void beginRun (art::Run const& run) override;9

void beginSubRun(art::SubRun const& subRun) override;10

4. the text printed by the constructor and the analyze member functions has11

changed12

5. the file contains the definitions of the three new member functions, each13

of which simply makes some identifying printout14

Each of the new member functions must have exactly the argument list pre-15

scribed by art . The override keyword instructs the compiler to do the fol-16

lowing: if a member function has a name that is spelled incorrectly or it if17

has an incorrect argument list, the compiler will issue an error message and18

stop.19

This is a very handy feature. If the override keyword were absent, and if20

the function were spelled incorectly or the argument list were incorrect, then21

the compiler would assume that it was your intention to define a new member22

function that is unrelated to one of the optional art defined member functions.1

The result would be a difficult to diagnose run-time error: art would simply not2

recognize your member function and would never call it.3

Always provide the override keyword when your class provides one of the4

optional art defined member functions.5

For those with some C++ background, the three member functions beginJob,6

beginRun and beginSubRun are declared as virtual in the base class,7

art::EDAnalyzer. The override keyword is new in C++-11 and will not be8

described in older text books. It instructs the compiler that this member func-9

tion is intended to override a virtual function from the base class; if the compiler10

cannot find such a function in the base class, it will issue an error.11

As described in Section 2.6.2, art will call the beginJob method of each module12

once at the start of the job; it will call the beginRun method of each module at13

the start of each run and it will call the beginSubRun method of each module14

at the start of each sunRun.15

10.6 The classss art::Run, art::RunID, art::SubRun16

and art::SubRunID17

In Section 9.8.3.6 you learned about the class art::EventID, which describes18

the three-part event identifier. art also provides two related classes:19

art Documentation

Chapter 10: Exercise 3: The Optional Member Functions of art Modules 10–4

1. art::RunID, which is an one-part identifier for a run number20

2. art::SubRunID, which is a two-part identifier for a subRun21

You can find the header files for these classes at:22

$ less $ART_INC/art/Persistency/Provenance/RunID.h23

$ less $ART_INC/art/Persistency/Provenance/SubRunID.h24

Remember that you type a lower case letter “q” to exit less. Or you can25

look at these header files using one of the code browsers described in Section-26

ssec:ups:setup:headers:art.27

The argument to the beginRun method is a const reference to an object28

of type art::Run. This object is similar to an art::Event: a simplified29

picture is that it holds an art::RunID plus a collection of data products. The30

purpose of the art::Run object is to hold information that describes an entire1

run; some of that information might be available at the start of the run but2

some of it might only be added at the end of the run.3

You can find the header file for art::Run at:4

$ less $ART_INC/art/Framework/Principal/Run.h5

If you take a snapshot of a running art job you will see that there is exactly one6

object of type art::Run. This object is owned by art and art gives modules7

access to it when it calls their beginRun and endRun methods. Because it is8

passed by reference, the beginRun member function does not get a copy of the9

art::Run object; instead it has access to the unique art::Run object that is10

owned by art . Because it is passed by const reference, your analyzer module11

may look at information in the run object but it may not add information to12

the run object.13

In your analyze member function, if you have an art::Event, named event,14

you can access the associated run information by:15

art::Run const& run = event.getRun();16

You may sometimes see this written as:17

auto const& run = event.getRun();18

Both version mean exactly the same thing. When a type is long and awkward to19

write, the auto keyword is very useful; however it is likely to be very confusing20

to beginners. When you encounter it, check the header files for the classes on21

right hand side of the assignment; from there you can learn the return type of22

the member function that returned the information.23

In both cases the const& is very important. If you omit the reference part, the24

&, then the variable run will contain a copy of the run object that is owned by25

art . This is a waste of both CPU time and memory and in some circumstances26

it can be a significanct waste.27

art Documentation

Chapter 10: Exercise 3: The Optional Member Functions of art Modules 10–5

If you omit the const, but remember the &, then you will get a compiler28

error because the getRun() method only permits you const access to the run29

object.30

There is a very important habit that you need to develop as a user of art . Many31

methods in art , in the Workbook code and very likely in your experiment’s code,32

will return information by & or by const&. If you receive these by value, not by33

reference, then you will make copies that waste both CPU and memory; in some34

cases these can be significant wastes. Unfortunately there is no way to tell the35

compiler to catch this mistake. The only solution is your own vigilance.36

In the call to beginSubRun the argument is of type art::SubRun const&.1

A simplified description of this object is that it contains an art::SubRunID2

plus a collection of data products that describe the subRun. All of the com-3

ments about the class art::Run in the preceding few paragraphs apply to4

art::SubRun. You can find the header file for art::SubRun at:5

$ less $ART_INC/art/Framework/Principal/SubRun.h6

If you have an art::Event, named event, you can access the associated7

subRun object by,8

art::SubRun const& subRun = event.getSubRun();9

If you have an art::SubRun object, named subRun, you can access the asso-10

ciated art::Run object:11

art::Run const& run = event.getRun();12

10.7 Running this Exercise13

Look at the file optional.fcl. This FHiCL file runs the module Optional14

on the the input file inputFiles/input03 data.root. Consult Table 8.115

and you will see that this file contains 15 events, all from run 3. It contains16

events 1 through 5 from each of subRuns 0, 1 and 2. With this knowledge,17

and the knowledge of the source file Optional module.cc, you should have18

a clear idea of what this module will print out.19

In your build directory, run the following command20

$ art -c fcl/OptionalMethods/optional.fcl >& output/optional.log21

The part of the printed output that comes from the module Optional is given22

in Listing 10.1. Is this what you expected to see? If not, understand why this23

module made the printout that it did.24

Listing 10.1: The output produced by Optional module.cc when run using
optional.fcl

125

art Documentation

Chapter 10: Exercise 3: The Optional Member Functions of art Modules 10–6

2 Hello from Optional::constructor.26

3 Hello from Optional::beginJob.27

4 Hello from Optional::beginRun: run: 328

5 Hello from Optional::beginSubRun: run: 3 subRun: 029

6 Hello from Optional::analyze. Event id: run: 3 subRun: 0 event: 130

7 Hello from Optional::analyze. Event id: run: 3 subRun: 0 event: 231

8 Hello from Optional::analyze. Event id: run: 3 subRun: 0 event: 332

9 Hello from Optional::analyze. Event id: run: 3 subRun: 0 event: 433

10 Hello from Optional::analyze. Event id: run: 3 subRun: 0 event: 534

11 Hello from Optional::beginSubRun: run: 3 subRun: 135

12 Hello from Optional::analyze. Event id: run: 3 subRun: 1 event: 136

13 Hello from Optional::analyze. Event id: run: 3 subRun: 1 event: 21

14 Hello from Optional::analyze. Event id: run: 3 subRun: 1 event: 32

15 Hello from Optional::analyze. Event id: run: 3 subRun: 1 event: 43

16 Hello from Optional::analyze. Event id: run: 3 subRun: 1 event: 54

17 Hello from Optional::beginSubRun: run: 3 subRun: 25

18 Hello from Optional::analyze. Event id: run: 3 subRun: 2 event: 16

19 Hello from Optional::analyze. Event id: run: 3 subRun: 2 event: 27

20 Hello from Optional::analyze. Event id: run: 3 subRun: 2 event: 38

21 Hello from Optional::analyze. Event id: run: 3 subRun: 2 event: 49

22 Hello from Optional::analyze. Event id: run: 3 subRun: 2 event: 510

10.8 The Member Function beginJob11

The member function beginJob gets called once at the start of the job. The12

constructor of the each module is also called once at the start of the job. This13

brings up the question, what code belongs in the constructor and what code14

belongs in the beginJob member function.15

The answer to this question is partly clean and partly fuzzy. art does require16

that some tasks be done in the constructor, not in the beginJob member17

function, but the examples that you have seen so far do not have enough richness18

to illustrate this. These tasks will be pointed out as you encounter them.19

The second part of the answer is that we strongly encourage you to initialize as20

many of your data members as possible using the colon initializer syntax. This21

is simply a C++ best practice: if at all possible, do not allow uninitialized or22

incompletely initialized variables of any kind.23

Other tasks can be done in the constructor or the beginJob member function24

as you see fit. One reasonable guideline is that physics related tasks belong in25

the beginJob member function while computer science related tasks belong in26

the constructor. Your experiment may have additional guidelines.27

For those of you familiar with ROOT, we can provide an example of something28

physics related. We suggest that you create histograms, ntuples or trees in one of29

the begin methods, perhaps beginJob or beginRun. Other constraints may30

enter into this decision. If booking a histogram requires geometry information31

to set the limits correctly, that information may be run dependent and you will32

need to book these histograms in beginRun, not beginJob.33

art Documentation

Chapter 10: Exercise 3: The Optional Member Functions of art Modules 10–7

10.9 Suggested Activities34

10.9.1 Add the Matching end Member functions35

art defines the following three member functions:36

void endJob () override;1

void endRun (art::Run const& run) override;2

void endSubRun (art::SubRun const& subRun) override;3

In the file Optional module.cc, add these methods to the declaration of the4

class Optional and provide an implementation for each. In your implementa-5

tion, just copy the printout created in the corresponding begin function and,6

in that printout, change the string “begin” to “end”.7

Then rebuild this module and run it:8

$ buildtool9

$ art -c fcl/OptionalMethods/optional.fcl >& output/optional2.log10

Consult Chapter 9 if you need to remember how to indentify that the build11

completed successfully. Compare the output from this run of art with that of12

the previous run: do you see the addtional printout from the methods that you13

added?14

The solution to this activity is provided as the file OptionalAnswer01 module.cc.15

It is already built. You can run it with:16

$ art -c fcl/OptionalMethods/optionalAnswer01.fcl >& output/optionalAnswer01.log17

Does the output of your code match the output from this code?18

10.9.2 Run on Multiple Input Files19

In a single run of art , run your modified version of the module Optional on20

all of the three of the following input files:21

inputFiles/input01_data.root22

inputFiles/input02_data.root23

inputFiles/input03_data.root24

If you need a reminder about how to tell art to run on three input files in one25

job, consult Section 8.7.5.26

art Documentation

Chapter 11: Parameter Sets 11–1

11 Parameter Sets27

11.1 Introduction28

In the previous few chapters you used FHiCL files to configure art . In particular29

you learned how to define a module label30

moduleLabel : {31

module_type : ClassName32

}33

where module type is a keyword that is reserved to art , ClassName is the34

name of a module class and where the moduleLabel is an identifier that you35

get to define.36

When you define a module label you may add additional FHiCL definitions37

between the braces. For example:38

moduleLabel : {39

module_type : ClassName40

thisParameter : 141

thatParameter : 3.141591

anotherParameter : "a string"2

primes : [1, 3, 5, 7, 11]3

nestedPSet : {4

a : 15

b : 26

}7

}8

The only constraints are that each additional piece of information must be a9

legal FHiCL definition.10

You saw in all of the previous exercises that the constructor of module takes a11

parameter of type fhicl::ParameterSet. Until now the modules that you12

have seen have ignored this parameter.13

In this chapter you will learn about this parameter and how to use it.14

art Documentation

Chapter 11: Parameter Sets 11–2

The values of your new parameters can be arbitrarily complex15

These additional parameters will be passed to the module class in its construc-16

tor.17

In this way the module18

11.2 What You Will Learn19

In the previous few chapters you used FHiCL files to configure art .20

11.3 Prerequisites21

11.4 Running the Exercise22

11.5 Discussion23

11.6 Suggested Activities24

art Documentation

Chapter 12: Multiple Instances of a Module within one art Process 12–1

12 Multiple Instances of a Module within25

one art Process26

12.1 Prerequisites27

12.2 What You Will Learn28

12.3 Running the Exercise29

12.4 Discussion1

12.5 Suggested Activities2

art Documentation

Chapter 13: Accessing Data Products 13–1

13 Accessing Data Products3

13.1 Prerequisites4

13.2 What You Will Learn5

13.3 Running the Exercise6

13.4 Discussion7

13.5 Suggested Activities8

art Documentation

Chapter 14: Making Histograms and TFileService 14–1

14 Making Histograms and TFileService1

14.1 Prerequisites2

14.2 What You Will Learn3

14.3 Running the Exercise4

14.4 Discussion5

14.5 Suggested Activities6

art Documentation

Chapter 15: Looping Over Collections 15–1

15 Looping Over Collections7

15.1 Prerequisites8

15.2 What You Will Learn9

15.3 Running the Exercise10

15.4 Discussion11

15.5 Suggested Activities12

art Documentation

Chapter 16: The Geometry Service 16–1

16 The Geometry Service13

16.1 Prerequisites14

16.2 What You Will Learn15

16.3 Running the Exercise16

16.4 Discussion17

16.5 Suggested Activities18

art Documentation

Chapter 17: The Particle Data Table 17–1

17 The Particle Data Table19

17.1 Prerequisites20

17.2 What You Will Learn21

17.3 Running the Exercise22

17.4 Discussion23

17.5 Suggested Activities24

art Documentation

Chapter 18: GenParticle: Properties of Generated Particles 18–1

18 GenParticle: Properties of Generated25

Particles26

18.1 Prerequisites27

18.2 What You Will Learn28

18.3 Running the Exercise29

18.4 Discussion1

18.5 Suggested Activities2

art Documentation

18–2

Part III3

Users Guide4

art Documentation

Chapter 19: Obtaining Credentials to Access Fermilab Computing Resources 19–1

19 Obtaining Credentials to Access Fer-5

milab Computing Resources6

To request your Fermilab computing account(s) and permissions to log into the7

your experiment’s nodes, fill out the form Request for Fermilab Visitor ID and8

Computer Accounts. Typically, experimenters that are not Fermilab employees9

are considered visitors. You will be required to read the Fermilab Policy on10

Computing.1

After you submit the form, an email from the Fermilab Service Desk should ar-2

rive within a week (usually more quickly), saying that your Visitor ID (an iden-3

tifying number), Kerberos Principal and Services Account have been created.4

You will need to change the password for both Kerberos and Services.5

19.1 Kerberos Authentication6

Your Kerberos Principal is effectively a username for accessing nodes that run7

Kerberos in what’s called the FNAL.GOV realm (all non-PC Fermilab ma-1

chines). 1
2

To change your Kerberos password, first choose one (minimum 10 characters3

with mixture of upper/lower case letters and numbers and/or symbols such as4

!, , #, $, ,̂ &, *, %). From your local machine, log into the machine using5

ssh or slogin and run the kpasswd command. Respond to the prompts, as6

follows:1

$ kpasswd <username>@FNAL.GOV2

3

Password for username@FNAL.GOV: <--- type your current password here4

5

New password: <--- type your new password here6

1

New password (again): <--- type your new password here for confirmation2

1The FERMI.WIN.FNAL.GOV realm is available for PCs.

art Documentation

https://computing.fnal.gov/offsite_visitor/offsite_acct_request.shtml
https://computing.fnal.gov/offsite_visitor/offsite_acct_request.shtml
https://computing.fnal.gov/offsite_visitor/offsite_acct_request.shtml
http://security.fnal.gov/policies/cpolicy.html
http://security.fnal.gov/policies/cpolicy.html
http://security.fnal.gov/policies/cpolicy.html

Chapter 19: Obtaining Credentials to Access Fermilab Computing Resources 19–2

3

Kerberos password changed.4

Your Kerberos password will remain valid for 400 days.5

19.2 Fermilab Services Account6

The Services Account enables you to access a number of important applica-1

tions at Fermilab with a single username/password (distinct from your Kerberos2

username/password). Applications available via the Services Account include3

SharePoint, Redmine, Service Desk, VPN and others.4

To get your initial Services Account password, a user must first contact the5

Service Desk to get issued a first time default password. Once a default password6

is issued, users can access http://password-reset.fnal.gov/ to change it.1

If you are not on-site or connected to the Fermi VPN, call the Service Desk2

at 630-840-2345. You will be given a one-time password and a link to change3

it.4

art Documentation

Chapter 20: Using git 20–1

20 Using git5

The source code for the exercises in the art workbook is stored in a source6

code management system called git and maintained in a repository managed by1

Fermilab. Think of git as an enhanced svn or (a VERY enhanced) cvs system.2

The repository is located at . You will be shown how to access it with git.3

If you want some background on git, we suggest the Git Reference.4

You will need to know how to install git, download the workbook exercise files5

initially to your system and how to download updates. You will not be checking6

in any code.7

To install git on a Mac:1

$ http://git-scm.com/download/mac2

This will automatically download a disk image. Open the disk image and click1

on the .pkg file.2

In your home directory, edit the file .bash profile and add the line:3

$ export PATH=/usr/local/git/bin/:${PATH}4

$ git clone ssh://p-art-workbook@cdcvs.fnal.gov/cvs/projects/art-workbook5

and how to download updates as the developers make them:6

$ git pull7

art Documentation

https://cdcvs.fnal.gov/redmine/projects/art-workbook/repository
http://gitref.org/basic/

Chapter 21: art Run-time and Development Environments 21–1

21 art Run-time and Development Envi-8

ronments9

21.1 The art Run-time Environment10

Your art run-time environment consists of:11

• your current working directory12

• all of the directories that you can see and that contain relevant files, in-13

cluding system directories, project directories, product directories, and so14

on15

• the files in the above directories16

• the environment variables in your environment (not sure how to say this17

nicely)18

• any aliases or shell functions that are defined19

Figures 21.1, 21.2 and 21.3 show the elements of the run-time environment in20

various scenarios, and a general direction of information flow for job execu-21

tion.22

When you are running art , there are three environment variables that are par-23

ticularly important:24

• PATH25

• LD LIBRARY PATH26

• FHICL FILE PATH27

They are colon-separated lists of directory names. When you type a command1

at the command prompt, or in a shell script, the (bash) shell splits the line using2

whitespace and the first element is taken as the name of a command. It looks in3

three places to figure out what you want it to do. In order of precedence:4

1. it first looks at any aliases that are defined5

art Documentation

Chapter 21: art Run-time and Development Environments 21–2

Figure 21.1: Elements of the art run-time environment, just for running the
Toy Experiment code for the Workbook exercises

Figure 21.2: Elements of the art run-time environment for running an experi-
ment’s code (everything pre-built)

art Documentation

Chapter 21: art Run-time and Development Environments 21–3

Figure 21.3: Elements of the art run-time environment for a production job
with officially tracked inputs

2. secondly, it looks for shell keywords in your environment with the com-6

mand name you provide7

3. thirdly, it looks for shell functions in your environment with that name8

4. then it looks for shell built-ins in your environment with that name9

5. finally, it looks in the first directory defined in PATH and looks for a10

file with that name; if it does not find a match, it continues with the11

next directory, and so on, followed by the paths defined in the other two12

variables.13

Some parts of the run-time environment will be established at login time by your14

login scripts. This is highly site-dependent. We will describe what happens at1

Fermilab - consult your site experts to find out if anything is provided for you2

at your remote site.3

When running the workbook, the interesting parts of your environment are4

established in two steps:5

• source a site-specific setup script6

• source a project-specific setup script7

The Workbook, and the software suites for most IF experiments, are designed8

so that all site dependence is encoded in the site-specific setup script; that script9

art Documentation

Chapter 21: art Run-time and Development Environments 21–4

adds information to your environment so that the project-specific scripts can be10

written to work properly on any site.11

21.2 The art Development Environment12

The development environment includes the run-time environment in Section 21.113

plus the following.14

• the source code repository15

• the build tools (these are the tools that know how to turn .h and .cc16

files in to .so files)17

• additional environment variables and PATH elements that simplify the use18

of the above1

Figures 21.4, 21.5 and 21.6 illustrate the development environment for various2

scenarios.3

Figure 21.4: Elements of the art development environment as used in most of
the Workbook exercises

In some experiments the run-time and development environments are identi-4

cal.5

It turns out that there is no perfect solution for the job that build tools do.6

As a result, several different tools are widely used. Every tool has some pain7

associated with it. You never get to avoid pain entirely but you do get to pick8

where you will take your pain.9

art Documentation

Chapter 21: art Run-time and Development Environments 21–5

Figure 21.5: Elements of the art development environment for building the full
code base of an experiment

Figure 21.6: Elements of the art development environment for an analysis
project that builds against prebuilt release

art Documentation

Chapter 21: art Run-time and Development Environments 21–6

The workbook uses a build tool named cetbuildtools. Other projects have10

chosen make, cmake, scons and Software Release Tools (SRT). Here is some-11

thing to watch out for: “build tools” written as two words refers generically to12

the above set of tools; but “buildtools” written as one word is the name of the13

executable that runs the build for cetbuildtools.14

art Documentation

Chapter 22: art Framework Parameters 22–1

22 art Framework Parameters15

This chapter describes all the parameters currently understood by the art frame-16

work, including by framework-provided services and modules. The parameters17

are organized by category (module, service or miscellaneous), and preceded18

by a general introduction to the expected overall structure of an art FHiCL19

configuration document.20

22.1 Parameter Types21

The parameters are described in tables for each module. The type of a defined22

parameter may be:23

• TABLE: A nested parameter set, e.g., set: { par1: 3 }24

• SEQUENCE: A homogeneous sequence of items,25

e.g., list: [1, 1, 2, 3, 5, 8]1

• STRING: A string (enclosing double quotes not required when the string2

matches [A-Za-z][A-Za-z0-9]*). (Note: Special keywords when quoted3

are no longer keywords.) E.g.,4

simpleString: g275

harderString: "a-1"6

sneakystring1: "nil"7

sneakystring2: "true"8

sneakystring3: "false"9

• COMPLEX: A complex number; e.g., cnum: (3, 5)10

• NUMBER: A scalar (integer or floating point), e.g., num: 2.79E-811

• BOOL: A boolean, e.g.,12

tbool: true13

fbool: false14

15

art Documentation

Chapter 22: art Framework Parameters 22–2

22.2 Structure of art Configuration Files16

The expected structure of an art configuration file17

Note, any parameter set is optional, although certain parameters or sets are18

expected to be in particular locations if defined.1

Prolog (as many as desired, but they must all be contiguous with only2

whitespace or comments inbetween.3

BEGIN_PROLOG4

pset:5

{6

nested_pset:7

{8

v1: [a, b, "c-d"]9

b1: false10

c1: 2911

}12

}13

END_PROLOG14

15

Defaulted if missing: you should define it in most cases.16

process_name: PNAME17

18

Descriptions of service and general configuration.1

services:2

{3

Parameter sets for known, built-in services here.4

...5

6

Parameter sets for user-provided services here.7

user:8

{9

}10

11

General configuration options here.1

scheduler:2

{3

}4

}5

6

Define what you actually want to do here.7

physics:8

{9

Parameter sets for modules inheriting from EDProducer.10

producers:11

art Documentation

Chapter 22: art Framework Parameters 22–3

{12

myProducer:13

{14

module_type: MyProducer15

nested_pset: @local::pset.nested_pset16

}17

}18

19

Parameter sets for modules inheriting from EDFilter.20

filters:21

{22

myFilter: { module_type: SomeFilter }23

}24

25

Parameter sets for modules inheriting from EDAnalyzer.26

analyzers:1

{2

}3

4

Define parameters which are lists of names of module sets for5

inclusion in end_paths and trigger_paths.6

7

p1: [myProdroducer, myFilter]8

e1: [myAnalyzer, myOutput]9

10

Compulsory for now: will be computed automatically in a future11

version of ART.12

13

trigger_paths: [p1]14

end_paths: [e1]15

}16

17

The primary source of data: expects one and only one input source18

parameter set.19

source:20

{21

}22

23

Parameter sets for output modules should go here.24

outputs:25

{26

27

}28

art Documentation

Chapter 22: art Framework Parameters 22–4

22.3 Services29

22.3.1 System Services30

These services are always loaded regardless of whether a configuration is speci-31

fied.32

22.3.2 FloatingPointControl33

These parameters control the behavior of floating point exceptions in different34

modules.35

Table 22.1: art Floating Point Parameters
Enclosing Ta-
ble Name

Parameter Name Type Default Notes

services floating point control TABLE {} Top-level pa-
rameter set for
the service

floating point
control

setPrecisionDouble BOOL false

reportSettings BOOL false
moduleNames SEQUENCE [] Each module

name listed
should also
have its own
parameter
set within float-
ing point control.
One may also
specify a module
name of, ”de-
fault” to provide
default settings
for the following
items:

¡module-name¿ enableDivByZeroEx BOOL false
enableInvalidEx BOOL false
enableOverFlowEx BOOL false
enableUnderFlowEx BOOL false

art Documentation

Chapter 22: art Framework Parameters 22–5

22.3.3 Message Parameters36

These parameters configure the behavior of the message logger (this is a pseudo-37

service – not accessible via ServiceHandle).

Table 22.2: art Message Parameters
Enclosing Ta-
ble Name

Parameter Name Type Default Notes

services message TABLE Top-level pa-
rameter set for
the service

message

38

22.3.4 Optional Services39

These services are only loaded if a configuration is specified (although it may40

be empty).41

22.3.5 Sources42

22.3.6 Modules43

Output modules1

art Documentation

Chapter 23: Job Configuration in art: FHiCL 23–1

23 Job Configuration in art: FHiCL2

Run-time configuration for art is written in the Fermilab Hierarchical Configu-3

ration Language (FHiCL, pronounced “fickle”), a language that was developed4

at Fermilab to support run-time configuration for several projects, including art .5

For this reason, this chapter will need to discuss FHiCL both as a standalone6

language and as used by art .7

By convention, the names of FHiCL files end in .fcl. Job execution is per-8

formed by running art on a FHiCL configuration file, which is specified via an9

argument for the -c option:10

$ art -c run-time-configuration-file.fcl11

See Figure ?? in Section 21.1 to see how the configuration file fits into the12

run-time environment.13

The FHiCL concept of sequence, as listed in brackets [], maps onto the C++14

concept of std::vector, which is a sequence container representing an array that15

can change in size. Similarly, the FHiCL idea of table, as listed in curly brackets16

{}, maps onto the idea of fhicl::ParameterSet. . Note that ParameterSet is not17

part of art ; it is part of a utility library used by art , FHICL-CPP, which is the18

C++ toolkit used to read FHiCL documents within art . FHiCL files provide19

the parameter sets to the C++ code, specified via module labels and paths,20

that is to be executed.21

23.1 Basics of FHiCL Syntax22

23.1.1 Specifying Names and Values23

A FHiCL file contains a collection of definitions of the form24

name : value25

where “name” is a parameter that is assigned the value “value.” Many types26

of values are possible, from simple atomic values (a number, string, etc., with27

no internal whitespace) to highly structured table-like values; a value may also28

art Documentation

Chapter 23: Job Configuration in art: FHiCL 23–2

be a reference to a previously defined value. The white space on either side of29

the colon is optional. However, to include whitespace within a string, the string30

must be quoted (single or double quotes are equivalent in this case).31

The fragment below will be used to illustrate some of the basics of FHiCL32

syntax:33

A comment.34

// Also a comment.35

36

37

name0 : 123 # A numeric value. Trailing comments38

work, too.39

_name0 : 123 # Names can begin with underscores40

41

name00 : "A quoted comment prefix, # or //, is just part of a42

quoted string, not a comment"43

1

name1:456. # Another numeric value; whitespace is2

not important within a definition3

name2 : -1.e-64

name3 : true # A boolean value5

NAME3 : false # Other boolean value; names are case-6

sensitive.7

name4 : red # Simple strings need not be quoted1

name5 : "a quoted string"2

name6 : ’another quoted string’3

4

name7 : 1 name8 : 2 # Two definitions on a line, separated by5

whitespace.6

name9 # Same as name9:3 ; newlines are just7

: # whitespace, which is not important.8

39

1

2

namea : [abc, def, ghi, 123] # A sequence of atomic values.3

FHiCL allows heterogeneous4

sequences, which are not,5

however, usable via the C++ API.6

7

nameb : # A table of definitions; tables may nest.8

{9

name0: 45610

name1: [7, 8, 9, 10]11

name2:12

{13

name0: 78914

art Documentation

Chapter 23: Job Configuration in art: FHiCL 23–3

}15

}16

17

namec : [name0:{ a:1 b:2 } name1:{ a:3 c:4 }]18

A sequence of tables.19

20

named : [] # An empty sequence21

namee : {} # An empty table22

23

namef : nil # An atomic value that is undefined.24

25

abc : 1 # If a definition is repeated twice within26

abc : 2 # the same scope, the second definition27

def : [1, 2, 3] # will win (e.g., "abc" will be 2 and1

def : [4, 5, 6] # "def" will be [4,5,6])2

name : {3

abc : 14

abc : 25

}6

7

cont1:{x: 1.0 y: 2.0 z: 3.0} # Hierarchical (compound) names denote8

cont1.x : 5 # levels of scope; here set x in cont1 to 5.9

OR10

cont2:[1, 2, 3]11

cont2[0] : 1 # Here, redefine the first (atomic) value12

for cont2, assign it the value 1. I.e., here,13

no action. Indices of PHiCL sequences14

begin with 0. \fixme{right?}15

16

name0:{ a:1 b:2 }17

x : @local::name0.a # Using reference notation "@local," this assigns18

to xthe value of a in table name0, in the19

line above, this value is 1.20

23.1.2 FHiCL-reserved Characters and Keywords21

Several keywords, symbols and strings are reserved to FHiCL. What does this22

mean? Whenever FHiCL encounters a reserved string, FHiCL will interpret23

it according to the reserved meaning. Nothing prevents you from using these24

reserved strings in a name or value, but if you do, it is likely to confuse FHiCL.25

FHiCL may produce an error or warning, or it may silently do something differ-26

ent than what you intended. Bottom line: don’t use reserved strings or symbols27

in the FHiCL environment for other than their intended uses.28

The following characters, including the two-character sequence ::, are reserved29

art Documentation

Chapter 23: Job Configuration in art: FHiCL 23–4

to FHiCL:30

, : :: @ [] { } ()31

The following keywords have special meaning to FHiCL. They can be used32

as parameter values to pass to classes, e.g., to initialize a variable within a33

program, but their uses will not be fully described here because of subtleties34

and variations. As you work with C++ and FHiCL, the way to use them will35

become clearer.36

true, false These values convert to a boolean37

nil This value is associated with no data type. E.g. if a : nil, then a can’t38

be converted to any data type, and it must be redefined before use39

infinity, +infinity, -infinity These values initialize a variable to positive (the40

first two) or negative (the third) infinity41

BEGIN PROLOG, END PROLOG ()42

The first six keywords (three lines) above are only keywords when entered as43

lower case and unquoted; the last two keywords (the last line) are only keywords44

when they are in upper case, unquoted and at the start of a line. Otherwise45

these are just strings. You may include any of the above reserved characters1

and keywords in a “quoted” string to prevent them from being recognized as2

keywords.3

23.2 FHiCL Keywords Reserved to art4

FHiCL supports run-time configuration for several projects, not only for art .5

art reserves certain FHiCL names as keywords that it uses in well-defined ways.6

(Other projects may use FHiCL names differently.) Within FHiCL files used by7

art , these FHiCL names obey scoping rules similar to C++. These keywords8

appear in the FHiCL file with a scope, i.e.,9

keyword : {10

...11

}12

if they define a list of modules or a processing block, or with square brackets13

14

keyword :[15

...16

]17

if they define a list of paths.18

The following is a list of the keywords reserved to art and their meanings. In the19

outermost scope within a FHiCL file, the following keywords can appear:20

art Documentation

Chapter 23: Job Configuration in art: FHiCL 23–5

process name A user-given name to identify the configuration defined by the21

FHiCL file (it is recommended to make it similar to the FHiCL file name).22

This must appear at the top of the file. It may not contain the underscore23

character ().24

source Identifies the data source, e.g., a file in ROOT format containing HEP25

events.26

services Identifies ...27

physics Identifies the block of code that configures the scientific work to be28

done on every event (as contrasted with the “bookkeeping” portions).29

outputs List of output modules.30

The following may appear within the physics scope:31

producers Sets the list and order of producer modules; see Chapter 2532

analyzers Sets the list and order of analyzer modules; see Chapter 2633

filters Sets the list and order of filter modules; see Chapter 2734

trigger paths List of producer and/or filter module paths; for each event,35

art executes all these module paths. The paths may only contain the36

module labels of producer and filter modules that are in the list of defined37

module labels. art can identify module labels that are common to several38

trigger paths and will execute them only once per event. The various39

paths within the trigger paths may be executed in any order.40

end paths List of analyzer and/or output module paths; for each event, art41

executes all these module paths exactly once. The various paths within42

the end paths may be executed in any order.1

The keyword process name is really only reserved to art within the outermost2

scope (but it would seem to be needlessly confusing to use process name as3

the name of a parameter within some other scope). The names trigger paths4

and end paths are artifacts of the first use of the CMS framework, to simulate5

the several hundred parallel paths within the CMS trigger; their meaning should6

be come clear after reading the remainder of this page.7

23.3 Structure of a FHiCL Run-time Configu-8

ration File for art9

Here is a sample FHiCL file called ex01.fcl that will do a physics analysis10

using the code in the art module Ex01 module.so (the object file of the C++11

source file Ex01 module.cc). In this configuration, art will operate sequen-12

tially on the first three events contained in the source file inputFiles/input01 data.root.13

art Documentation

Chapter 23: Job Configuration in art: FHiCL 23–6

#include "fcl/minimalMessageService.fcl"14

15

process_name : ex0116

17

source : {18

module_type : RootInput19

fileNames : ["inputFiles/input01_data.root"]20

maxEvents : 321

}22

23

services : {24

message : @local::default_message25

}26

27

physics :{28

analyzers: {29

hello : {30

module_type : Ex0131

}32

}33

34

e1 : [hello]35

end_paths : [e1]36

}1

Let’s look at it step-by-step.2

#include "fcl/minimalMessageService.fcl"3

Similar to C++ syntax, this effectively replaces the ‘#include’ line with4

the contents of the named file. This particular file sets up a messaging5

service.6

process_name : ex017

The value of the parameter process name (ex01, here, the same as the8

FHiCL file name) identifies this art job. It is used as part of the identifier9

for data products produced in this job. For this reason, the value that you10

assign may not contain underscore () characters. If the process name11

is absent, art substitutes a default value of “DUMMY.”12

source : {13

module_type : RootInput14

fileNames : ["inputFiles/input01_data.root"]15

maxEvents : 316

}17

This source parameter describes where events come from. There may18

be at most one source module declared in an art configuration. At present19

art Documentation

Chapter 23: Job Configuration in art: FHiCL 23–7

there are two options for choosing a source module:20

module type : RootInput art::Events will be read from an input file or from21

a list of input files; files are specified by giving their pathname within the22

file system.23

module type : EmptyEvent Internally art will start the processing of each24

event by incrementing the event number and creating an empty art::Event.25

Subsequent modules then populate the art::Event. This is the normal26

procedure for generating simulated events.27

Here RootInput is used; the data input file, in ROOT format, is assigned28

to the variable fileNames. The maxEvents parameter says: Look at29

only the first three events in this file. (A value of -1 here would mean30

“read them all.”)31

Note that if no source parameter set is present, art substitutes a default32

parameter set of:33

source : {34

module_type : EmptyEvent35

maxEvents : 11

}2

See the web page about configuring input and output modules for details about3

what other parameters may be supplied to these parameter sets.4

services : {5

message : @local::default_message6

}7

Before starting processing, this puts the message logger in the recom-8

mended configuration.9

physics :{10

analyzers: {11

hello : {12

module_type : Ex0113

}14

}15

In art , physics is the label for a portion of the run-time configuration16

of a job. It contains the “meat” of the configuration, i.e., the scientific17

processing instructions, in contrast to the more administrative or book-18

keeping information. The physics block of code may contain up to19

five sections, each labeled with a reserved keyword (that together form a20

parameter set within the FHiCL language); the keywords are analyzers,21

producers, filters, trigger paths and end paths. In our example it’s set to22

analyzers.23

art Documentation

Chapter 23: Job Configuration in art: FHiCL 23–8

The analyzers keyword takes values that are FHiCL tables of param-24

eter sets (this is true also for filters and producers). Here it takes25

the value hello, which is defined as a table with one parameter, namely26

module type, set to the value Ex01. The setup defined a variable called27

LD LIBRARY PATH; art knows to match the value defined by the name28

module type to a C++ object file with the name Ex01 module.so29

somewhere in the path defined by LD LIBRARY PATH.30

We will expand on the physics portion of the FHiCL configuration in31

Section 23.5.32

e1 : [hello]33

end_paths : [e1]34

23.4 Order of Elements in a FHiCL Run-time35

Configuration File for art36

In FHiCL files there are very, very few places in which order is important. Here37

are the places where it matters:38

• A #include must come before lines that use names found inside the39

#include.40

• A later definition of a name overrides an earlier definition of the same41

name.42

• The definition of a name resolved using @local needs to be earlier in the1

file than the place(s) where it is used.2

• Within a trigger path, the order of module labels is important.3

Here is a list of a few places (of many) where order does not matter. This list4

is by no means exhaustive.5

• Inside the physics scope, the order in which modules are defined does NOT6

matter for filters and analyzers blocks. These blocks define the run-time7

configurations of instances of modules.8

• The five art-reserved words that appear in the outermost scope of a FHiCL9

file can be in any order. You could put outputs first and process name10

last, as far as FHiCL cares. It may be more difficult for humans to follow,11

however.12

• Within the services block, the services may appear in any order.13

Regarding trigger paths and end paths, the following is a conceptual description14

of how art processes the FHiCL file:15

art Documentation

Chapter 23: Job Configuration in art: FHiCL 23–9

1. art looks at the trigger paths sequence. It expands each trigger path16

in the sequence, removes duplicate entries and turns the result into an17

ordered list of module labels. The final list has to obey the order of each18

contributing trigger path, but there are no other ordering constraints.19

2. It does the same for the end paths sequence but there is no constraint on20

order.21

3. It makes one big sequence that contains everything in 1 followed by ev-22

erything in 2.23

4. It looks throughout the file to find parameter sets to match to each module24

label in the big list in 3.25

5. It gives warning messages if there are left over parameter set definitions26

not matched to any module label in 3.27

6. It then parses the rest of the physics block to make a “dictionary” that28

matches module labels to their configuration.29

A conceptual description for the porcessing of services is as follows:30

1. art first makes a list of all services, sorted alphabetically.31

2. It makes a dictionary that matches service names to their parameter sets.32

A collorary is that service names must be unique within an art job.33

3. art has some “magic” services that it knows about internally. It loads the34

.so file for each of them and constructs the services.35

4. It loads the .so files for all of the services and calls their constructors,36

passing each service its proper parameter set.37

5. It works through its list of modules in 5 - it loads the .so and calls the38

constructor, passing the constructor the right parameter set.39

6. It gives warning messages if there are left-over parameter set definitions1

not matched to any module label in 3.2

When one service relies on another, things get a bit more complicated. If service3

A requires that service B be constructed first, then the constructor of service4

A must ask art for a handle to service B. When this happens, art will start to5

construct service A since it is alphabetically first. When the constructor of A6

asks for a handle to B, art will interupt the construction of service A, construct7

service B, and return to finish service A. Next, art will see that the next thing8

in the list is B, but it will notice that B has already been constructed and will9

skip to the next one.10

Got that? Whew!11

art Documentation

Chapter 23: Job Configuration in art: FHiCL 23–10

23.5 The physics Portion of the FHiCL Config-12

uration13

art looks for the experiment code in art modules. These must be referenced14

in the FHiCL file via module labels, which are just variable names that take15

particular values, as this section will describe. The structure of the FHiCL16

file – or a portion thereof – therefore defines the event loop for art to execute.17

The event loop, as defined in the FHiCL file, is collected into a scope labeled18

physics.19

For a module label you may choose any name, as long as it is unique within a job,20

contains no underscore () characters and is not one of the names reserved to art .21

In the sample physics scope code below, we define aProducer, bProducer,22

checkAll, selectMode0 and selectMode1 as module labels.23

physics: {24

25

producers : {26

aProducer: { module_type: MakeA }27

bProducer: { module_type: MakeB }28

}29

30

analyzers : {31

checkAll: { module_type: CheckAll }32

}33

34

filter : {1

selectMode0: {2

module_type: Filter13

mode: 04

}5

selectMode1: {6

module_type: Filter17

mode: 18

}9

}10

The minimum configuration of a module is:11

<moduleLabel> : { module_type : <ClassName> }12

for example, in our code above:13

aProducer: { module_type: MakeA }14

aProducer is the module label and MakeA corresponds to a module of exper-15

iment code (i.e., an art module) named MakeA module.so, which in turn was16

art Documentation

Chapter 23: Job Configuration in art: FHiCL 23–11

built from MakeA module.cc. Since it falls within the scope producers, it17

must be a module of type EDProducer.18

Let’s take this a step farther, and assume that this EDProducer-type module19

MakeA accepts four arguments that we want to provide to art . The configura-20

tion may look like this:21

moduleLabel : {22

module_type : MakeA23

pname0 : 1234.24

pname1 : [abc, def]25

pname2 : {26

name0: {}27

}28

}29

This list under module type : MakeA represents parameters that will be30

formed into a fhicl::ParameterSet object and passed to the module MakeA31

as an argument in its constructor. pname0 is a double, pname1 is a sequence32

of two atomic character values, pname2 consists of a single table named name033

with undefined contents.34

Note that paths are lists of module labels, while the two reserved names, trigger paths35

and end paths are lists of paths.1

23.6 Choosing and Using Module Labels and2

Path Names3

For a module label or a path name, you may choose any name so long as it is4

unique within a job, contains no underscore () characters and is not one of the5

names reserved to art (see Section 23.2.6

Any name that is a top-level name inside of the physics parameter set is either7

a reserved name or the name of a path.8

It is important to recognize which identifiers are module labels and which are9

path names in a FHiCL file. It is also important to distinguish between a class10

that is a module and instances of that module class, each uniquely identified by11

a module label.12

art has several rules that were recommended practices in the old framework but13

which were not strictly enforced by that framework. art enforces some of these14

rules and will, soon, enforce all of them:15

• A path may go into either the trigger paths list or into the end paths16

list, but not both.17

art Documentation

Chapter 23: Job Configuration in art: FHiCL 23–12

• A path that is in the trigger paths list may only contain the module18

labels of producer modules and filter modules.19

• A path that is in the end paths list may only contain the module labels20

of analyzer modules and output modules.21

Analyzer modules and the output modules may be separated into different paths;22

that might be convenient at some times but it is not necessary. On the other23

hand, keeping trigger paths separate has real meaning.24

23.7 Scheduling Strategy in art25

A set of scheduling rules is enforced in art . (Some of the details are remnants26

of compromises and conflicting interests with CMS.) One of the top-level rules27

in the scheduler is that all producers and filters must be run first, using the28

ordering rules specified below. After that, all analyzer and output modules will29

be run. Recall that analyzer modules and output modules may not modify the30

event, nor may they produce side effects that influence the behavior of other31

analyzer or output modules. Therefore, art is free to run analyzer and output32

modules in any order.33

The full description of the scheduler strategy is given below:34

• If a module name appears in the definition of a path name but it is not35

found among the the list of defined module labels, FHiCL will issue an36

error.37

• One each event, before executing any of the paths, execute the source38

module.39

• On each event, execute all of the paths listed in the trigger paths.1

– Within one path, the order of modules listed in the path is followed2

strictly; at present there is one exception to this: see the discussion3

about the remaining issues4

– art can identify module labels that are in common to several trig-5

ger paths and will execute them only once per event. In the above6

example, aProducer and bProducer are executed only once per event.7

– The various paths within the trigger paths may be executed in any8

order, subject to the above constraints.9

– If a path contains a filter, and if the filter return false, then the10

remainder of the path is skipped.11

– The module name of a filter can be negated in path using, !module-12

Label; in this case the path will continue if the filter returns false13

and will be aborted if the filter returns true.14

art Documentation

Chapter 23: Job Configuration in art: FHiCL 23–13

– If the module label of a filter appears in two paths, negated in one15

path and not negated in the other, art will only run the instance of16

filter module once and will use the result in both places.17

– If a module in a trigger path throws, the default behaviour of art is to18

stop all processing and to shut down the job as gracefully as possible.19

Art can be configured, at run time, so that, for selected exceptions,20

it behaves differently. For example it can be configured to continue21

with the current trigger path, skip to the next trigger path, skip to22

the next event, and so on.23

• On each event, execute all of the paths listed in the end paths.24

– The module labels listed in end paths are executed exactly once per25

event, regardless of how many paths there are in the trigger paths26

and regardless of any filters that failed.27

– If a module label appears multiple times among the end paths, it is28

executed only once. No warning message is given.29

– Even if all trigger paths have filters that fail, all module labels in the30

end path will be run.31

– End path is free to execute the modules in the end path in any order.32

– If a module in the end path throws, the default response of art is to33

make a best effort to complete all other modules in the end path and34

then to shutdown the job in an orderly fashion. This behaviour can35

be changed at run-time by adding the appropriate parameter set to36

the top level .fcl file.1

• One can ask that an output module be run only for events that pass a2

given trigger path; this is done using the SelectEvents parameter set,3

• At present there is no syntax to ask that an analyzer module be run4

only for events that pass or fail some of the trigger paths. A planned5

improvement to art is to give analyzer modules a SelectEvents parameter6

that behaves as it does for output modules.7

• If a path appears in neither the trigger paths nor the end paths, there is8

no warning given.9

• If a module label appears in no path, a warning will be given.10

In the above there is a lot of focus on which groups of modules are free to be11

run in an arbitrary order. This is laying the groundwork for module-parallel12

execution: art is capable of identifying which modules may be run in parallel13

and, on a multi-core machine, art could start separate threads for each module.14

At present both ROOT and G4 are not thread-safe so this is not of immediate15

interest. But there are efforts underway to make both of these thread-safe and16

we may one day care about module-parallel execution; our interest in this will17

art Documentation

Chapter 23: Job Configuration in art: FHiCL 23–14

depend a great deal on the future evolution of the relative costs of memory and18

CPU.19

For simple cases, in which there is one trigger path with only a few modules20

in the path, and one end path with only a few modules in the path, the extra21

level of bookkeeping is just extra typing with no obvious benefit. The benefit22

comes when many work groups wish to run their modules on the same events23

during one art job; perhaps this is a job skimming off many different calibration24

samples or perhaps it is a job selecting many different streams of interesting25

Monte Carlo events. In such a case, each work group needs only to define their26

own trigger path and their own end path, without regard for the requirements27

of other work groups; each work group also needs to ensure that their paths are28

added to the end paths and trigger paths variables. Art will then automatically,29

and correctly, schedule the work without redoing any work twice and without30

skipping work that must be done. This feature came for free with art and,31

while it imposes a small burden for novice users doing simple jobs, it provides32

an enormously powerful feature for advanced users. Therefore it was retained33

in art when some other features were removed.34

23.8 Scheduled Reconstruction using Trigger Paths35

Consider the following problem. You wish to run a job that has:36

• Two producers MakeA module.cc and MakeB module.cc. You want to1

run both producers on all events.2

• One analyzer module that you want to run on all events, CheckAll module.cc.3

• You have a filter module, Filter1 module.cc that has two modes, 0 and 1;4

the mode can be selected at run time via the parameter set.5

• You wish to write all events that pass mode 0 of the filter to the file6

file0.root and you wish to write all events that pass mode 1 of the filter to7

file1.root8

Here is code that would accomplish this:9

process_name: filter110

11

source: {12

Configure some source here.13

}14

15

physics: {16

17

producers : {18

aProducer: { module_type: MakeA }19

art Documentation

Chapter 23: Job Configuration in art: FHiCL 23–15

bProducer: { module_type: MakeB }20

}21

22

analyzers : {23

checkAll: { module_type: CheckAll }24

}25

26

filter : {27

selectMode0: {28

module_type: Filter129

mode: 030

}31

selectMode1: {32

module_type: Filter133

mode: 134

}35

}36

37

mode0: [aProducer, bProducer, selectMode0]38

mode1: [aProducer, bProducer, selectMode1]39

analyzermods: [checkAll]1

outputFiles: [out0, out1]2

3

trigger_paths : [mode0, mode1]4

end_paths : [analyzermods, outputFiles]5

}6

7

outputs: {8

out0: {9

module_type: RootOutput10

fileName: "file0.root"11

SelectEvents: { SelectEvents: [mode0] }12

}13

14

out1: {15

module_type: RootOutput16

fileName: "file1.root"17

SelectEvents: { SelectEvents: [mode1] }18

}19

20

}21

Recall that the names process name, source, physics, producers, analyzers, fil-22

ters, trigger paths, end paths and outputs are reserved to art . The names23

aProducer, bProducer, checkAll, selectMode0, selectMode1, out0 and out1 are24

module labels, and these are names of paths: mode0, mode1, outputFiles, ana-25

art Documentation

Chapter 23: Job Configuration in art: FHiCL 23–16

lyzermods.26

23.9 Reconstruction On-Demand27

23.10 Bits and Pieces28

What variables are known to art? physics (which has the five reserved keywords29

fi30

lters, analyzers, producers, trigger paths and end paths), what else? input file31

type RootInput32

I know that trigger path are // different from end paths, they can contain33

different types of modules; // event gets frozen after trigger path.34

art knows to match the value defi35

ned by the name ’module name” to a C++ object fi36

le with the name module name module.so” somewhere in the path defi37

ned by LD LIBRARY PATH.38

Further information on the FHiCL language and usage can be found at the1

mu2e FHiCL page.2

art Documentation

http://mu2e.fnal.gov/public/hep/computing/runtimeconfig.shtml
http://mu2e.fnal.gov/public/hep/computing/runtimeconfig.shtml
http://mu2e.fnal.gov/public/hep/computing/runtimeconfig.shtml

Chapter 24: Data Products 24–1

24 Data Products3

24.1 Overview4

A data product is anything that you can add to an event or see in an event.5

Examples include the generated particles, the simulated particles produced by6

Geant4 , the hits produced by Geant4, tracks found by the reconstruction algo-7

rithms, clusters found in the calorimeters and so on.8

24.2 The Full Name of a Data Product9

Each data product within an event is uniquely identified by a four-part identi-10

fier that includes all namespace information. The four parts are separated by11

underscores:12

DataType_ModuleLabel_InstanceName_ProcessName13

DataType identifies the data type that is stored in the product. It is a “friendly”14

identifier in the way that its syntax has been standardized to deal with collection15

types, as follows:16

• If a product is of type T , then the friendly name is “T”.17

• If a product is of type mu2e::T, then the friendly name is “mu2e::T”.18

• If a product is of type std::vector〈mu2e::T〉, then the friendly name is19

“mu2e::Ts”.20

• If a product is of type std::vector〈std::vector〈 mu2e::T〉 〉, then the friendly21

name is “mu2e::Tss”.22

• If a product is of type cet::map vector〈mu2e::T〉, then the friendly name23

is “mu2e::Tmv”. See below for a discussion about where underscores may24

not be used; this example is safe because of the substitution of “mv” for25

map vector.26

art Documentation

Chapter 24: Data Products 24–2

ModuleLabel identifies the module that created the product; this is the module27

label , which distinguishes multiple instances of the same module within a28

produces . It is not the class name of the module.29

InstanceName is a label for the data product that distinguishes two or more30

data products of the same type that were produced by the same module, in31

the same process . If a data product is already unique within this scope, it is32

legal to leave this field blank . The instance label is the optional argument of33

the call to “produces” in the constructor of the module (xxxx below) :34

produces<T>("xxxx");35

ProcessName is the name of the process that created this product. It is specified36

in the FHiCL file that specifies the run-time configuration for the job (shown37

as ReadBack02 below):38

process_name : ReadBack0239

Because the full name of the product uses the underscore character to delimit40

fields, it is forbidden to use underscores in any of the names of the fields. There-41

fore, none of the following items may contain underscores:42

• the class name of a class that is a data product; the exception is the43

cet::map vector template; when creating the friendly name, art internally44

recognizes this case and protects against it45

• the namespace in which a data product class lives1

• module labels2

• data product instance names3

• process names4

It is important to know which names need to match each other; see Sec-5

tion 30.1.6

art Documentation

Chapter 25: Producer Modules 25–1

25 Producer Modules7

art Documentation

Chapter 26: Analyzer Modules 26–1

26 Analyzer Modules8

Analyzer modules request data products, do not create new ones; make his-9

tograms, etc. .10

An analyzer interface looks like the following.11

class EDAnalyzer {12

// explicit EDAnalyzer(ParameterSet const&)13

14

virtual void analyze(Event const&) = 015

virtual void reconfigure(ParameterSet const&)1

2

virtual void beginJob()3

virtual void endJob()4

virtual bool beginRun(Run const &)5

virtual bool endRun(Run const &)6

virtual bool beginSubRun(SubRun const &)7

virtual bool endSubRun(SubRun const &)8

9

virtual void respondToOpenInputFile(FileBlock const& fb)10

virtual void respondToCloseInputFile(FileBlock const& fb)11

virtual void respondToOpenOutputFiles(FileBlock const& fb)12

virtual void respondToCloseOutputFiles(FileBlock const& fb)13

}14

art Documentation

Chapter 27: Filter Modules 27–1

27 Filter Modules15

Filter modules request data products and can alter further processing using16

return values .17

A filter interface looks like the following.18

class EDFilter {19

// explicit EDFilter(ParameterSet const&)20

21

virtual bool filter(Event&) = 022

virtual void reconfigure(ParameterSet const&)23

24

virtual void beginJob()1

virtual void endJob()2

virtual bool beginRun(Run &)3

virtual bool endRun(Run &)4

virtual bool beginSubRun(SubRun &)5

virtual bool endSubRun(SubRun &)6

7

virtual void respondToOpenInputFile(FileBlock const& fb)8

virtual void respondToCloseInputFile(FileBlock const& fb)9

virtual void respondToOpenOutputFiles(FileBlock const& fb)10

virtual void respondToCloseOutputFiles(FileBlock const& fb)11

}12

art Documentation

Chapter 28: art Services 28–1

28 art Services13

Several types of art services exist:14

• TFile: Controls the ROOT directories (one per module) and manages15

the histogram file.16

• Timing: Tracks CPU and wall clock time for each module for each event17

• Memory: Tracks increases in overall program memory on each module18

invocation19

• FloatingPointControl: Allows configuration of FPU hardware “‘ex-20

ception” processing21

• (RandomNumberService): Manages the state of a random number22

stream for each interested module23

• (MessageFacility): Routes user-emitted messages from modules based24

on type and severity to destinations25

An access interface looks like the following.1

#include "art/Framework/Services/Optional/TFileService.h"1

...2

art::ServiceHandle<art::TFileService> tfs;3

fFinalVtxX = tfs->make<TH1F>("fFinalVtxX",4

"Circe Vertex X; Xfit-Xmc (cm); Events",5

200, -50.0, 50.0);6

FHiCL configuration of services7

services:8

{9

TFileService:10

{11

fileName: "tfile_output.root"12

}13

14

user:15

{16

art Documentation

Chapter 28: art Services 28–2

experiment- or user-defined plugin service17

}18

...19

}20

art Documentation

Chapter 29: art Input and Output 29–1

29 art Input and Output21

29.1 Input Modules22

29.1.1 Configuring Input Modules to Read from Files1

When reading from an existing file, art allows you to select the input files, the2

starting event, the number of events to read, etc., either from the command3

line or from the FHiCL file. If a particular quantity is controlled from both4

the command line and the FHiCL file, the value on the command line takes5

precedence.6

The following code fragment tells art to read event data from the file of type7

“ROOT,” named “file01.root” and to start at the beginning of the file. A value of8

“-1” for maxEvents tells art to read events until the end of file is reached:9

To tell art to read 100 events, or until the end of file, which ever comes first,10

change the parameter maxEvents to 100. This also shows how to specify a list11

of input files:12

The number of files in the list of input files is arbitrary. The following fragment13

tells art to skip the first two events (and thus start with the third):14

The fragment below shows some other parameters that can be included in the15

source parameter set:16

The parameters whose names start with first specify that the first event to be17

processed will be the first event that has an EventID greater than or equal to18

Listing 29.1: Reading in a ROOT data file

1 source :{
2 module_type : RootInput
3 fileNames : ["file01.root"]
4 maxEvents : -1
5 }

art Documentation

Chapter 29: art Input and Output 29–2

Listing 29.2: Reading in a ROOT data file

1 source : {
2 module_type : RootInput
3 fileNames : ["file01.root", "file02.root", "file03.root"]
4 maxEvents : 100
5 }

Listing 29.3: Reading in a ROOT data file

1 source : {
2 module_type : RootInput
3 fileNames : ["file01.root", "file02.root", "file03.root"]
4 maxEvents : 100
5 skipEvents : 2
6 }

the specified event. If one of the first* parameters is not specified, it takes a19

default value of -1 and is excluded from the comparison.20

If a file of unsorted events is read in, art will, by default, present the events21

for processing in order of increasing event number. As a corollary to this, the22

output file will contain the events in sorted order. This sorting occurs one input1

file at a time; art does not sort across file boundaries in a list of input files. If2

the noEventSort parameter is set to true, the sorting is disabled, which will, in3

most cases, yield a minor performance improvement.4

I have not yet learned the precise meaning of the skipBadFiles and the fileMatch-5

Mode parameters.6

The inputCommands parameter tells art to delete certain data products from7

the copy of the event in memory after reading the input file. In other words, the8

input file itself is not modified but data products are removed from the copy of9

the event in memory before any modules are called. The syntax of this language10

is the same as for outputCommands, described .11

In the pre-art versions of the framework, there were methods to select ranges of12

events or ranges of SubRuns. This is not yet working in art ; the art developers13

will add this feature back once we decided exactly what we mean by ”ranges of14

Listing 29.4: Reading in a ROOT data file

1 firstRun : 0
2 firstSubRun : 0
3 firstEvent : 0
4 noEventSort : false
5 skipBadFiles : false
6 fileMatchMode : "permissive"
7 inputCommands : ""

art Documentation

Chapter 29: art Input and Output 29–3

Listing 29.5: Reading in a ROOT data file

1 source :{
2 module_type : EmptyEvent
3 maxEvents : 200
4 }

Listing 29.6: Reading in a ROOT data file

1 source :{
2 module_type : EmptyEvent
3 firstRun : 2
4 firstSubRun : 1
5 firstEvent : 1
6 numberEventsInRun : 1000
7 numberEventsInSubRun : 100
8 maxEvents : 200
9 resetEventOnSubRun : true

10 }

events”.15

Specifying Many Input Files In the pre-art, python based, configuration lan-16

guage, the standard syntax to initialize a list of input files was limited to 25517

files, after which an alternate syntax was required. This is no longer necessary;18

the length of a fhicl list is limited only by available memory.19

Empty Source20

In many simulation applications one wishes to start with an empty event, run21

one or more event generators, pass the generated particles through the Geant4,22

and so on. In art the first step in this chain is accomplished using a source23

module named EmptySource, as follows:24

Instead of reading event-data from a file, the empty source increments the event25

number and presents an empty event to the modules that will do the work. One26

may configure EmptySource to specify the EventId of the first event, to specify27

the maximum number of events in a SubRun or SubRuns in a run.28

The last option tells art to reset event numbers to start at 1 whenever art29

starts a new SubRun begins; this is the default behaviour and is opposite to the30

behaviour we inherited from CMS.1

29.2 Output Filtering2

Any output module can be configured to write out only those events passing a3

given trigger path.4

art Documentation

Chapter 29: art Input and Output 29–4

The parameter set that configures the output module uses a parameter Se-1

lectEvents to control the output, as shown in the example below:2

this is only a fragment of a full configuration ...3

physics:4

{5

pathA: [...] # producers and filters are put in this path6

pathB: [...] # other producers, other filters are put in this path7

8

outA: [passWriter] # output modules and analyzers are put in this path9

outB: [failWriter] # output modules and analyzers are put in this path10

outC: [exceptWriter] # output modules and analyzers are put in this path11

12

trigger_paths: [pathA, pathB] # declare that these are "trigger paths"13

end_paths: [outA outB outC] # declare these are "end paths"14

}15

16

outputs:17

{18

passWriter:19

{20

module_type: RootOutput1

fileName: "pathA_passes.root"2

Write all the events for which pathA ended with ’true’ from filtering.3

Events which caused an exception throw will not be written.4

SelectEvents: { SelectEvents: ["pathA&noexeception"] }5

}6

failWriter:7

{8

module_type: RootOutput9

fileName: "pathA_failures.root"10

Write all the events for which pathA ended with ’false’ from filtering.11

Events which caused an exception throw will not be written.12

SelectEvents: { SelectEvents: ["!pathA&noexception"] }13

}14

exceptWriter:15

{16

module_type: RootOutput17

fileName: "pathA_exceptions.root"18

Write all the events for which pathA or pathB ended because an exception was thrown.1

SelectEvents: { SelectEvents: ["exception@pathA", "exception@pathB"] }2

}3

}4

art Documentation

Chapter 29: art Input and Output 29–5

29.3 Configuring Output Modules5

art Documentation

Chapter 30: art Misc Topics that Will Find Home 30–1

30 art Misc Topics that Will Find Home6

30.0.1 The Bookkeeping Structure and Event Sequencing7

Imposed by art8

In almost all HEP experiments, the core idea underlying all bookkeeping is the9

event. In a triggered experiment, an event is defined as all of the information10

associated with a single trigger; in an untriggered spill-oriented experiment, an11

event is defined as all of the information associated with a single spill of the beam12

from the accelerator. Another way of saying this is that an event contains all13

of the information associated with some time interval, but the precise definition14

of the time interval changes from one experiment to another. Typically these15

time intervals are a few nano-seconds to a few tens of mirco-seconds. The16

information within an event includes both the raw data read from the Data17

Acquisition System (DAQ) and all information that is derived from that raw18

data by the reconstruction and analysis algorithms. An event is smallest unit19

of data that art can process at one time.20

In a typical HEP experiment, the trigger or DAQ system assigns an event identi-1

fier (event ID) to each event; this ID uniquely identifies each event. The simplest2

event ID is a monotonically increasing integer. A more common practice is to3

define a multi-part ID.4

art has chosen to use a three-part ID. In art , the parts are named5

• run number6

• subRun number7

• event number8

In a typical experiment the event number will be incremented every event. When9

some condition occurs, the event number will be reset to 1 and the subRun10

number will be incremented, keeping the run number unchanged. This cycle11

will repeat until some other condition occurs, at which time the event number12

will be reset to 1, the subRun number will be reset to 0 and the run number13

will be incremented.14

art does not define what conditions cause these transitions; those decisions are15

art Documentation

Chapter 30: art Misc Topics that Will Find Home 30–2

left to each experiment. Typically, experiments will choose to start new runs or16

new subRuns when any of the following happen:17

• a preset number of events have been acquired18

• a preset time interval has expired19

• a disk file holding the ouptut has reached a preset size20

• certain running conditions change21

art requires only that a subRun contain zero or more events and that a run22

contain zero or more subRuns.23

As runs are collections of subRuns, and subRuns are collections of events, events24

in turn are collections of data products. A data product is the smallest unit of25

data that can be added to or retrieved from a given event. Each experiment26

defines types (classes and structs) for its own data products. These include types27

that describe the raw data, and types to define the reconstructed data and the28

information produced by simulations. art knows nothing about the internals of29

any experiment’s data products; for art , the data product is a “fundamental30

particle.”31

At the outside shell of the Russian doll that is the bookkeeping structure in art ,32

runs are collected into the event-data, defined as all of the data products in an33

experiment’s files; plus the metadata that accompanies them.34

When an experiment takes data, events read from Data Acquisition System35

(DAQ) are typically written to disk files, with copies made on tape. art imposes36

only weak constraints on the event sequence within a file. The events in a single37

subRun may be spread over several files; conversely a single file may contain38

many runs, each of which contains many subRuns.39

A critical feature of art ’s design is that each event must be uniquely identifable40

by its event ID. This requirement also applies to simulated events.41

30.1 Rules for Module Names42

Within any experiment’s software, sometimes names of files, classes, libraries,1

etc., must follow certain rules. Other times, conventions are just conventions.1

This section is concerned with actual rules only.2

Consider a class named MyClass that you wish to make into an art module.3

First, your class must inherit from one of the module base classes, EDAnalyzer,4

EDProducer or EDFilter. Secondly, it must obey the following rules, all of5

which are case-sensitive.6

1. it must be in a file named MyClass module.cc7

The build system will make this into a file named lib/libMyClass module.so.8

art Documentation

Chapter 30: art Misc Topics that Will Find Home 30–3

Listing 30.1: Module source sample

1 namespace xxxx {
2
3 class MyClass : public art::EDAnalyzer {
4
5 public:
6 explicit MyClass(fhicl::ParameterSet const& pset);
7 // Compiler generated destructor is OK.
8
9 void analyze(art::Event const& event);

10
11 };
12
13 MyClass::MyClass(fhicl::ParameterSet const& pset){
14 // Body of the constructor. You can access information
15 in the parameter set here.
16 }
17
18 void MyClass::analyze(art::Event const& event){
19 mf::LogVerbatim("test")
20 << "Hello, world. From analyze. "
21 << event.id();
22 }
23
24 } // end namespace xxxx
25
26 using xxxx::MyClass;
27 DEFINE_ART_MODULE(MyClass);

2. the module source file must look like Listing 30.1 (where your experiment’s9

namespace replaces xxxx):10

This example is for an analyzer. To create a producer or a filter mod-11

ule, you must inherit from either art::EDProducer or art::EDFilter, re-12

spectively. The last line (DEFINE ART MODULE(MyClass);) invokes a13

macro that inserts additional code into the .so file.14

For the experts: it inserts a factory method to produce an instance of the15

class and it inserts and auto-registration object that registers the factory16

method with art ’s module registry.17

To declare this module to the framework you need to have a fragment like18

the following in your FHiCL file:19

120

2 physics :21

3 {22

4 analyzers:23

5 {24

6 looseCuts : { module_type : MyClass }25

726

8 // Other analyzer modules listed here ...27

9 }28

art Documentation

Chapter 30: art Misc Topics that Will Find Home 30–4

10 }29

where the string looseCuts is called a module label and is is defined below.30

3. the previous item was for the case that your module is an analyzer. If it is1

a producer or filter, then the label analyzers needs to be either producers2

or filters.3

4. When you put a data product into an event, the data provenance system4

records the module label of the module that did the “put.”5

30.2 Data Products and the Event Data Model6

The part of art that deals with the bookkeeping of the data products is called7

the Event Data Model, which concerns itself with the following ideas:8

1. what a data product looks like when it is in the memory of a running9

program10

2. what it looks like on disk11

3. how it moves between memory and disk12

4. how a data product refers to another piece of event-data within the same13

event14

5. how a given piece of experiment code accesses a data product15

6. how the experiment code adds a new data product to the event16

7. metadata that describes, for each data product,17

• what piece of code was used to create it18

• what is the run-time configuration of that code19

• what data products were read in by this experiment code20

8. The mechanism by which the metadata is “married” to the data21

One of the core principles of art is that experiment code modules may commu-22

nicate with each other only via the event.23

30.3 Basic art Rules24

art prescribes that your classes (i.e., your art modules) always contain a member25

function that has a particular name, takes a particular set of arguments, and26

operates on every event; art will call this member function for every event27

read from the data source (input). If no member function with these attributes28

art Documentation

Chapter 30: art Misc Topics that Will Find Home 30–5

exists, then at execution time art will print an error message and stop execution.29

1
30

If your module provides any optional functions, then art requires a name and a31

set of arguments for each. For each of these that is present in a given class, art32

will make sure that it is called at the right time.33

The details of the art rules will be discussed in .34

30.4 Compiling, Linking, Loading and Execut-35

ing C++ Classes and art Modules36

When you write code to be executed by art , you provide it to art as a group1

of C++ functions. To make this group of functions visible to art , you write a2

C++ class that obeys a set of rules defined by art (summarized in Section ??).3

Such a class is called an art module, or just module in this documentation (this4

should not be confused with the notion of a module as defined more generally5

in the programming world). The container source code file for an art module6

gets compiled into a shared object library that can be dynamically loaded by7

art .8

The experiment’s shared code libraries in Figures ?? and ?? may include libraries9

containing standard C++ classes as well as art modules.10

Experiments typically have many, many C++ classes for offline processing, and11

physicists add to them all the time. Classes from many files can be linked into a12

single library, as shown in Figure 30.1. The shared libraries may have one-way13

dependencies on each other; i.e. if library ‘a’ depends on library ‘b’, then the14

reverse cannot be true.15

art modules, as mentioned above, follow a special structure, illustrated in16

Figure 30.2. They do not use header (.h) files (everything for a module is17

contained within a single .cc file), a single module builds a single shared li-18

brary, and the name (as recognized by art) for each file in the build chain19

must end in module, e.g., MyCoolMod module.cc. Moreover, art recognizes20

MyCoolMod module.cc as the source for libxxx MyCoolMod module.so.1

(Discussion of the xxx will be deferred.)2

30.5 Shareable Libraries and art3

When you execute code within the art framework, the main executable is pro-4

vided by art , not by your experiment. Your experiment provides its code to the5

1Actually the loader that loads the shareable library, rather than art itself, will figure this
out.

art Documentation

Chapter 30: art Misc Topics that Will Find Home 30–6

Figure 30.1: Illustration of compiled, linked “regular” C++ classes (not art
modules) that can be used within the art framework. Many classes can be
linked into a single shared library.

art Documentation

Chapter 30: art Misc Topics that Will Find Home 30–7

Figure 30.2: Illustration of compiled, linked art modules; each module is built
into a single shared library for use by art

executable in the form of shareable object libraries that art loads dynamically at6

run time; these libraries are also called dynamic load libraries or plugins.7

Your experiment will likely have many “regular” C++ classes (as distinct from8

the C++ classes that are modules, aka “art modules”). These “regular” classes9

get built into a set of shareable libraries, where each library contains object10

code for multiple classes.11

Your experiment will likely have many modules, too. In fact you will likely be12

writing some for your own analyses. A module must be compiled into its own13

shareable object library, i.e., there is a one-to-one correspondance between the14

.cc file and the .so file for a given module. When the configuration file tells art15

to run a particular module, art finds the corresponding .so file, loads it, and16

calls the appropriate member function at each stage of the event loop.17

30.6 Namespaces, art and the Workbook18

A namespace is a prefix that is used to keep different subsets of code distin-19

guishable from one another; i.e., if the same identifier (variable name or type20

name) is used within multiple namespaces, each will remain distinguishable21

via its namespace prefix. The otherwise ambiguous identifier should be written22

as23

<namespace> :: <identifier>24

art Documentation

Chapter 30: art Misc Topics that Will Find Home 30–8

The notion of namespace is related to that of scope: Within a C++ source25

file (.cc files) a scope is designated by a set of curly braces ({ ... }). Once26

a namespace is defined within a given scope, any identifiers within that scope27

that “belong to” that namespace no longer need to be written with the prefi.28

E.g., the following fragment uses the analyze defined in the namespace tex29

(i.e., tex :: analyze):30

namespace tex {1

class First : public art :: EDAnalyzer {2

public :3

explicit First (fhicl :: ParameterSet const &);4

void analyze (art :: Event const & event) override ;5

};6

}7

Note that EDAnalyzer is defined in the namespace art, as is Event, and8

ParameterSet is in fhicl.9

Note also that namespaces are often associated with UPS product code, al-10

though the product and the namespace names may not always be identical. E.g.,11

code associated with the UPS product fhiclcpp is in the namespace fhicl.12

All of the code in the toyExperiment UPS product was written in a namespace13

named tex; the name tex is an acronym-like shorthand for the toyExperiment14

(ToyEXperiment) UPS product. Because all of the Workbook code builds on top15

of the toyExperiment code, this code has been placed in the same namespace.16

The tex namespace has no special meaning to art , it is just a convenience.17

(Note that the art code itself is in a separate namespace called art.)18

If you need more information about the C++ notion of namespaces, see a stan-19

dard C++ reference.20

30.7 Orphans21

A best practice: define ids in the narrowest scope possible to avoid accidental22

name collisions23

During processing, derived information in the event may be changed, added to24

or deleted; the raw data is not modified. The event is the smallest unit of data25

that art can process at one time.26

How bash shell scripts work27

If you would like to understand how they work, the following will be use-28

ful:29

• BASH Programming - Introduction HOW-TO30

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html31

art Documentation

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

Chapter 30: art Misc Topics that Will Find Home 30–9

• Bash Guide for Beginners32

http://www.tldp.org/LDP/Bash-Beginners-Guide/html/Bash-Beginners-Guide.html33

• Advanced Bash Scripting Guide1

http://www.tldp.org/LDP/abs/html/abs-guide.html2

The first of these is a compact introduction and the second is a more compre-3

hensive introduction.4

The above guides were all found at the Linux Documentation Project: Work-5

book:6

• http://www.tldp.org/guides.html7

30.8 Code Guards8

All of the header files that you will see in the Workbook wrap their contents9

with the following three lines:10

#ifndef path_to_this_header_file_h11

#define path_to_this_header_file_h12

// contents of the header file13

#endif /* path_to_this_header_file_h */14

The three lines beginning with # are macros that will be processed by the15

C preprocessor at the start of compilation. These lines are called code guards1

and they address the following issue.2

Suppose that you have a main program that includes two header files A.h and3

B.h; further suppose that both of A.h and B.h include a third header file C.h.4

When you compile the main program, the C preprocessor will expand all of the5

include directives to create a temporary .cc file on which the compiler will do6

its work. This temporary file must contain exactly one copy of the header file7

C.h; if it contains either zero copies or more than one copy (as it would in this8

case), the compiler will issue an error. The C preprocessor, by itself, is not9

smart enough to skip the second inclusion of C.h but it does provide the tools10

for us to help it do so.11

In the first two lines, the text path to this header file h is the name of a12

C preprocessor variable; the choice of the variable name will be described later13

but the important feature is that it must be unique within the compilation unit14

(the file being compiled). When the C preprocessor encounters the included file15

C.h, the line #ifndef tells the preprocessor to check to see if the C prepro-16

cessor variable with this name is defined. If the variable is not defined then the17

lines between the #ifndef line and the #endif line will be included in the18

output of the C preprocessor. If it is has already been defined, these lines will19

be excluded from the output.20

art Documentation

http://www.tldp.org/LDP/Bash-Beginners-Guide/html/Bash-Beginners-Guide.html
http://www.tldp.org/LDP/abs/html/abs-guide.html
http://www.tldp.org/guides.html

Chapter 30: art Misc Topics that Will Find Home 30–10

The first time that the preprocessor encounters C.h within a compilation unit,21

the variable will not have been defined and the contents of the header will be22

included in the output of the preprocessor. At the same time the second line23

of the above fragment will be executed; it is a preprocessor directive that tells24

the preprocessor to define the variable. In either case, when the preprocessor25

encounters the second inclusion of C.h, the #ifndef test will fail and the body26

of the header will not be copied into the output of the preprocessor. And so on27

for subsequent inclusions of C.h.28

If every header file in a code base correctly uses code guards, then every header29

file can safely include all other header files on which it depends and one need30

not worry about this causing compiler errors due to multiple declarations of a31

class or function.32

The full syntax of the #define directive allows one to specify a value for the33

variable but that is not important here; the #ifndef test only cares that the1

variable is defined, not what it value is.2

For code guards to work, each header file must chose a C preprocessor variable3

name that is unique within every compilation unit in which it might be included,4

either directly included or indirectly included. The convention that is used by5

art , by other libraries managed by the art team, by the toyExperiment UPS6

product and by the Workbook is that the name of the variable is the name of7

the path to the header file, starting from the root of the code base and with8

the slash and dot characters changed to underscores; the reason for this change9

is that slash and dot characters are not legal in the name of a C preprocessor10

variable. This works because all of these products also adopt the convention11

that the path to their header file starts with the product name. While this is12

not perfect security it is a very high level of security.13

30.9 Inheritance14

30.9.1 Introduction15

This section introduces a few of the ideas behind inheritance and polymorphism.16

There are many, many different ways to use inheritance and polymorphism but17

you only need to understand the small subset that are relevant for the Workbook18

exercises. You can read about inheritance and polymorphism at the following19

url:20

http://www.cplusplus.com/doc/tutorial/inheritance/21

Skip the section on Friendship and start at the section on inheritance. When22

you get to the bottom of the page, continue to the next page by clicking on the23

arrow for “Polymorphism”. You can skip the discussion of protected and private24

inheritance because you will only need to know about public inheritance.25

art Documentation

http://www.cplusplus.com/doc/tutorial/inheritance/

Chapter 30: art Misc Topics that Will Find Home 30–11

After you have learned this material, return to this section and work through26

the following example which serves as a test that you have learned the necessary27

material. This example is motivated by the Polygon example given in the ref-28

erenced material. In this example there is a base class named Shape and three29

derived classes, Circle, Triangle and Rectangle. The main program that30

exercises the these four classes is itest.cc.31

30.9.2 Homework32

To build and run this example:33

1. log in and follow the follow the steps in Section ??34

2. cd to the directory for this exercise1

$ cd Inheritance/v12

$ ls3

build Circle.h Rectangle.cc Shape.cc Triangle.cc4

Circle.cc itest.cc Rectangle.h Shape.h Triangle.h5

3. build the exercise6

$../build7

This will create the executable file itest8

4. run the exercise9

$ itest10

Area of circle c1 is: 3.1415911

Area of circle c2 is: 12.566412

Area of rectangle r1 is: 413

Area of triangle t1 is: 0.514

Area of triangle t2 is: 215

This circle has an area of 3.14159 and a color of undefined16

This circle has an area of 12.5664 and a color of red17

Unknown shape has color: blue18

This triangle has an area of 0.5 and a color of green19

This triangle has an area of 2 and a color of yellow20

21

When you run the code, all of the printout should match the above printout22

exactly.23

Read the code in the example and apply what you learned from the cplusplus.com24

website. Understand why the example prints out what it does.25

The next subsection contains some discussion about the example. In particular26

it will discuss the explicit and override keywords.27

art Documentation

Chapter 30: art Misc Topics that Will Find Home 30–12

30.9.3 Discussion28

The heart of this example is the base class Shape, found in Shape.h and29

Shape.cc. This class illustrates the following ideas:30

1. it has a data member named color , which describes an attribute that31

is common to all shapes. This data member is protected so it is visible32

to dervived classes.33

2. the two constructors guarantee that the color data member will be34

initialized whenever a derived class is instantiated.35

3. the class as two virtual functions, one of which is pure virtual. Therefore36

you cannot instantiate an object of type Shape.37

4. the class provides an implementation for the virtual method print.38

5. the class provides an accessor for color .39

The one argument constructor of Shape is declared explicit. Since shape40

cannot be constructed, we will use an imaginary class named T to illustrate.1

2

The derived class Circle:3

1. has one data member, the radius of the circle.4

30.10 Inheritance Relic5

The first line of the class First’s declaration is:6

class First : public art::EDAnalyzer {7

The fragment (: public art::EDAnalyzer) tells the C++ compiler that8

the class First inherits from the class named art::EDAnalyzer via public9

inheritancec0. “Inheritance is a way of creating new classes which extend the10

facilities of existing classes by including new data and functions. The class which11

is extended is known as the base class and the result of an extension is known12

as the derived class; the derived class inherits the data and function members13

of the base classc0.” In the current example art::EDAnalyzer is a base class14

and First is a derived class.15

The idea of inheritance is a very powerful feature of C++ that has many uses,16

only a few of which are relevant for art modules. This discussion should help17

c0Inheritance can be either public or private; the Workbook exercises always use public
inheritance.

c0D.M. Capper’s Introducing C++ for Scientists, Engineers and Mathematicians, Springer-
Verlag Limited 1994, Chapter 11

art Documentation

Chapter 30: art Misc Topics that Will Find Home 30–13

you focus on the relevant information if you need to consult C++ references on18

inheritance.19

30.11 Pointers20

C++, like many other computer languages, allows you to define variables that21

are pointers to information held in other variables. The value of a pointer is22

the memory address of the information held by the given variable. A native23

C++ pointer is often referred to as a bare pointer. While pointers provide great24

flexibility for producing fast, efficient algorithms, they are also easy to misuse.25

art has been designed so that user code will rarely, if ever, interact with art26

via bare pointers; when pointer-like behaviour is required, art will provide that27

information inside a wrapper that is generically referred to as a smart pointer28

or a safe pointer ; art defines different sorts of smart pointers for use in different29

circumstances. The job of a smart pointer is to recognize misuse and to protect30

against it. One commonly used type of smart pointer is called a handle.31

30.12 RootOutput and table of event IDs32

When RootOutput writes a file, it writes the event information to the file and33

it also writes a table of event Ids that allows it to random access a single event34

without needing to read all of the events before it. This table is kept in order of35

increasing event id. When you open a file and read it, RootInput starts reads36

events in the order found in the table.1

30.13 Troubleshooting2

(Section 6.3) setup returns the error message3

You are attempting to run ‘‘setup’’ which requires administrative4

privileges, but more information is needed in order to do so.5

The simplest solution is to log out and log in again.6

art Documentation

30–14

Part IV7

Index8

art Documentation

INDEX 30–15

Index

art9

paths used in, 610

ROOT support, 1511

Unix environment, 412

C++, 213

base class, 814

inheritance, 815

module, see module16

Singleton Design Pattern, 1117

C++ 11, 218

FHiCL, 119

analyzer module, 920

API, 521

art, 122

API, 523

applicability, 124

as an external product, 1325

C++, 126

command, 627

configuration file, see configuration28

file29

data product, see data product30

development environment, 431

documentation suite, 332

event, see event1

event ID, see event ID2

event loop, see event loop3

getting help, 34

keywords, 45

module, see module6

module types, 97

post-initialization steps, 88

run-time environment, 19

services, see services10

use as external package, 211

users, 212

art module, see module13

art-users email list, 314

artdaq, 115

boost, 1316

build system, 1217

build tools, 4, 618

buildtools, 619

C++20

-Werror, 621

.cc files, 122

.h files, 123

.o files, 124

.so files, 125

automatic type conversion, 1326

build, 1, 1127

output option, 628

build commands, 929

c++ command, 9, 10, 1230

code guards, 81

compile, 1, 42

declaration, 373

definition within declaration, 374

executable program, 15

external packages, 71

float, 62

free function, 391

function2

argument list, 73

declaration, 74

art Documentation

INDEX 30–16

definition, 8, 135

implementation, 86

return type, 77

function ‘main’, 4, 7, 108

header files, 1, 79

implementation within declaration,10

3711

include directive, 1212

libraries, 1, 713

library types, 1314

link, 1, 415

link list, 216

linker, 1017

linker symbols, 1018

main program, 4, 719

object files, 120

pointer, 621

prerequisites, 422

rebuild subset, 723

signature, 1324

source code files, 125

std::vector¡T¿, 426

uninitialized variable, 527

unresolved references, 1128

variable addresses, 529

variable type, 630

calibration constants, see conditions in-31

formation32

cetbuildtools, 6, 12, 1333

CETLIB, 1334

CLHEP, 1335

cmake, 1236

cmsrun, 237

coding38

best practices, 2139

conventions, 2140

rules, 2141

style, 2142

coding standards, 243

C++, 244

C++ 11, 245

collection, 1046

conditions information, 1047

configuration file, 648

data file, 1549

data product, 1050

collection, see collection51

contents, 1052

DataType, see DataType53

distinguish from products, 1454

four-part identifier, 155

full name, 156

InstanceName, see InstanceName57

ModuleLabel, see ModuleLabel58

operations, 1459

persistency, 1560

persistent representation, 1561

ProcessName, see ProcessName62

transient representation, 1563

underscore, 164

DataType, 165

development environment, 41

Doxygen, 52

dynamic load libraries, see shareable3

libraries4

EDM, see Event-Data Model5

event, 5, 66

unique identifier, 57

event ID, 58

event number, 69

run number, 610

subRun number, 611

event loop, 6, 8, 912

event-data files, 1513

Event-Data Model, 1414

ROOT support, 1515

experiment code, see user code16

external products, see products17

FermiGrid, 1318

Fermilab Hierarchical Configuration Lan-19

guage, see FHiCL20

FHiCL, 1321

file catalog, 1622

file of Monte Carlo events, see event-23

data files24

file of simulated events, see event-data25

files26

filter module, 927

framework, 128

art Documentation

INDEX 30–17

boundary with user code, 229

infrastructure, 230

gcc, 1331

geometry specification, 1032

getting help, 333

git, 1334

help with art, 335

ifdh sam, 1436

InstanceName, 237

jobsub tools, 1338

message service, 1139

MF, 1340

module, 641

C++ class, 742

analyzer, see analyzer43

filter, see filter44

output, see output45

producer, see producer46

requirements, 747

source, see source48

types, 949

module label, 1250

module types, 951

ModuleLabel, 252

NTuple, 953

output module, 954

packages, see products55

parameter set56

module label, 1257

plugins, see shareable libraries58

processing loop, see event loop59

ProcessName, 260

producer module, 961

products, 3, 1362

access to, 163

distinguish from data product, 1464

distribution via UPS/UPD, 1, 1465

external, 166

product directories, 167

PRODUCTS, 168

reconstruction on demand, 769

replica manager, 1670

ROOT, 9, 1371

run, 672

run-time configuration73

value types, 174

run-time configuration file, see config-75

uration file76

run-time environment, 177

SAM, 14, 1678

services, 1079

message service, see message ser-80

vice81

requesting information from, 1182

TFileService, see TFileService83

shareable libraries, 1284

.so files, 1285

build system, 1286

shared object library, 787

site-specific setup, 188

procedures, 189

Unix environment, 11

smart pointer, 112

source module, 93

subRun, 64

TFileService, 115

toy experiment, 4, 166

Tree, 97

underscore8

as field delimiter, 29

where forbidden, 210

Unix11

art Workbook environment, 412

bash alias, 813

bash function, 814

bash script, 715

bash shell, 316

commands, 117

computing environment, 418

environment, 319

environment layers, 420

art Documentation

INDEX 30–18

environment variables, 1, 421

examine environment, 422

execute vs source, 723

help for commands, 124

important concepts, 225

login scripts, 826

login shell, 327

non-standard commands, 128

path vs PATH, 629

scripts, 330

shell variables, 531

shells, 232

suggested references, 933

working environment, 1, 434

UPS/UPD, 13, 1335

databases, 136

features, 137

user code, 138

Workbook, 439

toy experiment, see toy experiment40

Unix environment, 441

art Documentation

	Contents
	art Glossary
	List of Figures
	List of Tables
	Listings
	I Introduction
	Conventions Used in this Documentation
	Introduction to the art Event Processing Framework
	What is art and Who Uses it?
	Why art?
	C++ and C++11
	Getting Help
	Overview of the Documentation Suite
	The Introduction
	The Workbook
	Users Guide
	Reference Manual
	Technical Reference
	Glossary

	Some Background Material
	Events and Event IDs
	art Modules and the Event Loop
	Module Types
	art Data Products
	art Services
	Shareable Libraries and art
	Build Systems and art
	External Products
	The Event-Data Model and Persistency
	Event-Data Files
	Files on Tape

	The Toy Experiment
	Toy Detector Description
	Workflow for Running the Toy Experiment Code

	Rules, Best Practices, Conventions and Style

	Unix Prerequisites
	Introduction
	Commands
	Shells
	Scripts: Part 1
	Unix Environments
	Layering Environments
	Examining and Using Environment Variables

	Paths and $PATH
	Scripts: Part 2
	bash Functions and Aliases
	Login Scripts
	Suggested Unix and bash References

	Site-Specific Setup Procedure
	Get your C++ up to Speed
	Introduction
	Establishing the Environment
	Initial Setup
	Subsequent Logins

	C++ Exercise 1: The Basics
	Concepts to Understand
	How to Compile, Link and Run
	Suggested Homework
	Discussion
	How was this Exercise Built?

	C++ Exercise 2: About Compiling and Linking
	What You Will Learn
	The Source Code for this Exercise
	Compile, Link and Run the Exercise
	Alternate Script build2
	Suggested Homework

	C++ Exercise 3: Libraries
	What You Will Learn
	Building and Running the Exercise

	Classes
	Introduction
	C++ Exercise 4 v1: The Most Basic Version
	C++ Exercise 4 v2: The Default Constructor
	C++ Exercise 4 v3: Constructors with Arguments
	C++ Exercise 4 v4: Colon Initializer Syntax
	C++ Exercise 4 v5: Member functions
	C++ Exercise 4 v6: Private Data and Accessor Methods
	Setters and Getters
	What's the deal with the underscore?
	An example to motivate private data

	C++ Exercise 4 v7: The inline keyword
	C++ Exercise 4 v8: Defining Member Functions within the Class Declaration
	C++ Exercise 4 v9: The stream insertion operator
	Review

	C++ References

	Using External Products in UPS
	The UPS Database List: PRODUCTS
	UPS Handling of Variants of a Product
	The setup Command: Syntax and Function
	Current Versions of Products
	Environment Variables Defined by UPS
	Finding Header Files
	Introduction
	Finding art Header Files
	Finding Headers from Other UPS Products
	Exceptions: The Workbook, ROOT and Geant4

	II Workbook
	Preparation for Running the Workbook Exercises
	Introduction
	Getting Computer Accounts on Workbook-enabled Machines
	Choosing a Machine and Logging In
	Launching new Windows: Verify X Connectivity
	Choose an Editor

	Exercise 1: Run Pre-built art Modules
	Introduction
	Prerequisites
	What You Will Learn
	Running the Exercise
	The Pieces
	Log In, Set Up and Execute art
	Standard Procedure
	Procedure allowing Self-managed Working Directory

	Logging In Again
	Examine Output
	Understanding the Configuration File hello.fcl
	Some Bookkeeping Syntax
	Some Physics Processing Syntax
	Command line Options
	Maximum Number of Events to Process
	Changing the Input Files
	Skipping Events
	Identifying the User Code to Execute
	Paths
	Writing an Output File

	Understanding the Process for Exercise 1
	Follow the Site-Specific Setup Procedure (Details)
	Make a Working Directory (Details)
	Setup the toyExperiment UPS Product (Details)
	Copy Files to your Current Working Directory (Details)
	Source makeLinks.sh (Details)
	Run art (Details)

	How does art find Modules?
	The art Run-time Environment
	Finding FHiCL files: FHICL_FILE_PATH
	The -c command line argument
	#include Files

	Exercise 2: Build and Run Your First Module
	Introduction
	Prerequisites
	What You Will Learn
	Setting up to Run Exercises: Standard Procedure
	``Source Window'' Setup
	Examine Source Window Setup
	About git and What it Did
	Contents of the Source Directory

	``Build Window'' Setup
	Examine Build Window Setup

	Setting up to Run Exercises: Self-managed Working Directory
	Logging In Again
	The art Development Environment
	Running the Exercise
	Run art on first.fcl
	The FHiCL File first.fcl
	The Source Code File First_module.cc
	The #include Files
	The Declaration of the Class First
	The Constructor for the Class First
	Aside: Unused Formal Parameters
	The Member Function analyze and art::Event
	art::EventID
	DEFINE_ART_MACRO: The Module Maker Macros
	Some Alternate Styles

	What does the Build System Do?
	The Basic Operation
	Incremental Builds and Complete Rebulds
	Finding Header Files at Compile-time
	Finding Shared Library Files at Link-time
	Build System Details

	Suggested Activities
	Create Your Second Module
	Use artmod to Create Your Third Module
	Running Many Modules at Once
	Access Parts of the EventID

	Final Remarks
	Why is there no First_module.h File?
	The Three File Module Style

	Review
	What Makes a class an Analyzer Module
	Flow from source to .fcl

	Exercise 3: The Optional Member Functions of art Modules
	Introduction
	Prerequisites
	What You Will Learn
	Setting up to Run this Exercise
	The Source File Optional_module.cc
	The classss art::Run, art::RunID, art::SubRun and art::SubRunID
	Running this Exercise
	The Member Function beginJob
	Suggested Activities
	Add the Matching end Member functions
	Run on Multiple Input Files

	Parameter Sets
	Introduction
	What You Will Learn
	Prerequisites
	Running the Exercise
	Discussion
	Suggested Activities

	Multiple Instances of a Module within one art Process
	Prerequisites
	What You Will Learn
	Running the Exercise
	Discussion
	Suggested Activities

	Accessing Data Products
	Prerequisites
	What You Will Learn
	Running the Exercise
	Discussion
	Suggested Activities

	Making Histograms and TFileService
	Prerequisites
	What You Will Learn
	Running the Exercise
	Discussion
	Suggested Activities

	Looping Over Collections
	Prerequisites
	What You Will Learn
	Running the Exercise
	Discussion
	Suggested Activities

	The Geometry Service
	Prerequisites
	What You Will Learn
	Running the Exercise
	Discussion
	Suggested Activities

	The Particle Data Table
	Prerequisites
	What You Will Learn
	Running the Exercise
	Discussion
	Suggested Activities

	GenParticle: Properties of Generated Particles
	Prerequisites
	What You Will Learn
	Running the Exercise
	Discussion
	Suggested Activities

	III Users Guide
	Obtaining Credentials to Access Fermilab Computing Resources
	Kerberos Authentication
	Fermilab Services Account

	Using git
	art Run-time and Development Environments
	The art Run-time Environment
	The art Development Environment

	art Framework Parameters
	Parameter Types
	Structure of art Configuration Files
	Services
	System Services
	FloatingPointControl
	Message Parameters
	Optional Services
	Sources
	Modules

	Job Configuration in art: FHiCL
	Basics of FHiCL Syntax
	Specifying Names and Values
	FHiCL-reserved Characters and Keywords

	FHiCL Keywords Reserved to art
	Structure of a FHiCL Run-time Configuration File for art
	Order of Elements in a FHiCL Run-time Configuration File for art
	The physics Portion of the FHiCL Configuration
	Choosing and Using Module Labels and Path Names
	Scheduling Strategy in art
	Scheduled Reconstruction using Trigger Paths
	Reconstruction On-Demand
	Bits and Pieces

	Data Products
	Overview
	The Full Name of a Data Product

	Producer Modules
	Analyzer Modules
	Filter Modules
	art Services
	art Input and Output
	Input Modules
	Configuring Input Modules to Read from Files

	Output Filtering
	Configuring Output Modules

	art Misc Topics that Will Find Home
	The Bookkeeping Structure and Event Sequencing Imposed by art
	Rules for Module Names
	Data Products and the Event Data Model
	Basic art Rules
	Compiling, Linking, Loading and Executing C++ Classes and art Modules
	Shareable Libraries and art
	Namespaces, art and the Workbook
	Orphans
	Code Guards
	Inheritance
	Introduction
	Homework
	Discussion

	Inheritance Relic
	Pointers
	RootOutput and table of event IDs
	Troubleshooting

	IV Index
	Index

